我有一个像这样的巨大的CSV文件
代码,持续时间
101,32
205,111
722,33
205,67
722,33
205,241
现在我正在阅读大块文件,因为文件非常大。如何计算每个代码的平均持续时间并将其保存到CSV文件?
由于
答案 0 :(得分:1)
对每个数据框使用groupby.size
和groupby.sum
,然后将其缩减为结果:
import numpy as np
import pandas as pd
c = np.random.randint(100, 10000, 100000)
d = np.random.rand(100000)
df = pd.DataFrame({"c":c, "d":d})
r1 = df.groupby("c").d.mean()
counts = []
sums = []
for i in range(10):
df2 = df[i*10000:(i+1)*10000]
g = df2.groupby("c").d
counts.append(g.size())
sums.append(g.sum())
from functools import partial
func = partial(pd.Series.add, fill_value=0)
r2 = reduce(func, sums) / reduce(func, counts).astype(float)
您还可以使用以下代码进行最后一步:
r3 = pd.concat(sums, axis=1).sum(axis=1) / pd.concat(counts, axis=1).sum(axis=1).astype(float)
检查结果:
print np.allclose(r1, r2)
print np.allclose(r1, r3)
答案 1 :(得分:1)
不是pandas
但是它有效且内存效率很高。
import csv
from collections defaultdict
code_counts = defaultdict(int)
code_durations = defaultdict(int)
with open('yourfile.csv', 'rb') as f:
reader = csv.reader(f)
next(reader) # discard header row
for code, duration in reader:
code_counts[code] += 1
code_durations[code] += int(duration)
code_averages = {code: code_duratons[code] / float(code_counts[code]) for code in code_counts}
答案 2 :(得分:1)
您可以按代码分组并存储'Code'
,'Duration'
的计数和总和;像这样的东西:
import pandas as pd
def f(g):
return pd.DataFrame({'count': [g.shape[0]], 'sum': [g['Duration'].sum()]})
reader = pd.read_csv('data.csv',chunksize=2)
acc = pd.DataFrame({})
for chunk in reader:
acc = acc.add(chunk.groupby('Code').apply(f).reset_index(level=1,drop=True),fill_value=0)
acc['avg'] = acc['sum']/acc['count']
print acc
acc.to_csv('avg_codes.csv',cols=['avg'],index_label='Code')
终端输出:
count sum avg
Code
101 1 32 32.000000
205 3 419 139.666667
722 2 66 33.000000
文件输出 avg_codes.csv :
Code,avg
101,32.0
205,139.66666666666666
722,33.0