假设我从Series
未格式化的电话号码(作为字符串)开始,我想将它们格式化为(XXX)YYY-ZZZZ。
我可以使用正则表达式和str.match
或str.extract
来获取输入的子组件。我可以使用以下结果执行格式化:
ser = pd.Series(data=['1234567890', '2345678901', '3456789012'])
matched = ser.str.match(r'(\d{3})(\d{3})(\d{4})')
extracted = ser.astype(str).str.extract(r'(?P<first>\d{3})(?P<second>\d{3})(?P<third>\d{4})')
formatmatched = matched.apply(lambda x: '({0}) {1}-{2}'.format(*x))
print 'formatmatched'
print formatmatched
formatextracted = extracted.apply(lambda x: '({first}) {second}-{third}'.format(**x.to_dict()), axis=1)
print 'formatextracted'
print formatextracted
结果:
formatmatched
0 (123) 456-7890
1 (234) 567-8901
2 (345) 678-9012
dtype: object
formatextracted
0 (123) 456-7890
1 (234) 567-8901
2 (345) 678-9012
dtype: object
是否有矢量化方式在任一上下文中应用该格式化命令?
答案 0 :(得分:2)
您可以直接使用Series.str.replace()
:
In [47]: s = pandas.Series(["1234567890", "5552348866", "13434"])
In [49]: s
Out[49]:
0 1234567890
1 5552348866
2 13434
dtype: object
In [50]: s.str.replace(r"(\d{3})(\d{3})(\d{4})", r"(\1) \2-\3")
Out[50]:
0 (123) 456-7890
1 (555) 234-8866
2 13434
dtype: object
您还可以想象先进行另一次转换以删除任何非数字字符。
答案 1 :(得分:0)
你为什么不试试这个:
import pandas as pd
ser = pd.Series(data=['1234567890', '2345678901', '3456789012'])
def f(val):
return '({0}) {1}-{2}'.format(val[:3],val[3:6],val[6:])
print ser.apply(f)