有没有办法使用python在excel工作簿中拆分/取消合并单元格?我想要的是在下面解释 -
结果应该是一个包含以下条目的新excel文件 -
我使用xlrd为所有合并列复制相同字符串的解决方案如下所示 -
[注意:“formatted_info = True”标志尚未在我使用的xlrd中实现,因此我无法直接获取合并单元格的列表..我不应该在设置上升级xlrd。]
def xlsx_to_dict():
workbook = xlrd.open_workbook(xlsfile)
worksheet_names = workbook.sheet_names()
for worksheet_name in worksheet_names:
worksheet = workbook.sheet_by_name(worksheet_name)
num_rows = worksheet.nrows - 1
num_cells = worksheet.ncols - 1
curr_row = -1
header_row = worksheet.row(0)
columns = []
for cell in range(len(header_row)):
value = worksheet.cell_value(0, cell)
columns.append(value)
cities = []
for row in range(1,num_rows):
value = worksheet.cell_value(row,0)
type = worksheet.cell_type(row,0)
if not value == "":
cities.append(value)
names = []
for row in range(1,num_rows):
value = worksheet.cell_value(row,1)
type = worksheet.cell_type(row,1)
if not value == "":
names.append(value)
current_city = cities[0]
result_dict = {}
for curr_row in range(1,num_rows):
row = worksheet.row(curr_row)
curr_cell = -1
curr_name = names[0]
while curr_cell < num_cells:
curr_cell += 1
cell_value = worksheet.cell_value(curr_row, curr_cell)
if cell_value in cities and curr_cell == 0:
current_city = cell_value
if not result_dict.has_key(current_city):
result_dict[current_city] = {}
continue
if cell_value == "" and curr_cell == 0:
continue
if cell_value in names and curr_cell == 1:
curr_name = cell_value
if not result_dict[current_city].has_key(curr_name):
result_dict[current_city][curr_name] = {}
continue
if cell_value == "" and curr_cell == 1:
continue
try:
result_dict[current_city][curr_name]['Phone'].append(cell_Value)
except:
result_dict[current_city][curr_name]['Phone'] = [cell_value]
上面的函数将返回python字典,如下所示 -
{ 'New York' : { 'Tom' : [92929292, 33929] }, ........}
然后我将遍历目录并编写新的excel。
但是,我想要一些分割合并单元格的通用方法。
答案 0 :(得分:1)
此函数获取“实际”单元格值,即,如果坐标位于合并单元格内的任何位置,则为合并单元格的值。
WHERE TRIM((NO_ACCENTS(p.d_apellidos)) LIKE TRIM(NO_ACCENTS('%Lastname%'))
AND TRIM(NO_ACCENTS(p.d_nombres)) LIKE TRIM(NO_ACCENTS('%Firstname%')))
宽松地基于http://www.lexicon.net/sjmachin/xlrd.html#xlrd.Sheet.merged_cells-attribute
非常低效,但对于小型电子表格应该是可以接受的。
答案 1 :(得分:0)
如果你的文件中间没有空单元格,这可能会有所帮助,读取文件,做一些工作,重写它。
def read_merged_xls(file_contents):
book = xlrd.open_workbook(file_contents=file_contents)
data = []
sheet = book.sheet_by_index(0)
for rx in range(sheet.nrows):
line = []
for ry in range(sheet.ncols):
cell = sheet.cell_value(rx,ry)
if not cell:
cell = data[-1][ry] if data else ''
line.append(cell)
data.append(line)
return data
答案 2 :(得分:0)
import xlrd
import xlsxwriter
import numpy as np
import pandas as pd
def rep(l,i):
j= i
while(j>=0):
if not l[j-1] == u'':
return l[j-1]
else:
j = j-1
def write_df2xlsx(df,filename):
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter(filename,engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name='Sheet1', index = False)
# Close the Pandas Excel writer and output the Excel file.
writer.save()
def csv_from_excel(filename):
wb = xlrd.open_workbook(filename)
worksheet_names = wb.sheet_names()
for worksheet_name in worksheet_names:
sh = wb.sheet_by_name(worksheet_name)
#To find the headers/column names of the xlsx file
header_index = 0
for i in range(sh.nrows):
if(len(filter(lambda x: not (x.value == xlrd.empty_cell.value), sh.row(i))) == len(sh.row(i))):
header_row = sh.row(i)
header_index = i
break
columns = []
for cell in range(len(header_row)):
value = sh.cell_value(header_index, cell)
columns.append(value)
rows = []
for rownum in range(header_index+1,sh.nrows):
rows.append(sh.row_values(rownum))
data = pd.DataFrame(rows,columns = columns)
cols = [col for col in data.columns if u'' in list(data[col])]
res = []
for col in cols:
t_list = list(data[col])
res.append(map(lambda x,y: rep(list(data[col]),y[0]) if x == u'' else x,t_list,enumerate(t_list)))
for (col,r) in zip(cols,res):
data[col] = pd.core.series.Series(r)
write_df2xlsx(data,'ResultFile.xlsx')