我想弄清楚我的数据集中某些点是如何孤立的。我使用两种方法来确定隔离,最近邻居的距离和给定半径内的相邻站点的数量。我所有的坐标都是纬度和经度
这就是我的数据:
pond lat long area canopy avg.depth neighbor n.lat n.long n.distance n.area n.canopy n.depth n.avg.depth radius1500
A10 41.95928 -72.14605 1500 66 60.61538462
AA006 41.96431 -72.121 250 0 57.77777778
Blacksmith 41.95508 -72.123803 361 77 71.3125
Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444444
Borrow.Pit.2 41.95571 -72.15413 0 0 37.7
Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222222
Boulder 41.918223 -72.14978 1392 98 43.53333333
我想把最近的邻近池塘的名称放在邻居列中,它的纬度和长度在n.lat和n.long,两个池塘之间的距离为n.distance,以及区域,冠层和平均值.depth在每个适当的列中。
其次,我想把目标池塘1500米范围内的池塘数量调整到半径1500.
有没有人知道有助于我计算我想要的距离/数字的功能或包?如果这是一个问题,输入我需要的其他数据并不困难,但最近邻居的名字和距离加上1500米以内的池塘数量是我真正需要帮助的。
谢谢。
答案 0 :(得分:35)
最佳选择是使用库sp
和rgeos
,这使您可以构建空间类并执行地理处理。
library(sp)
library(rgeos)
读取数据并将其转换为空间对象:
mydata <- read.delim('d:/temp/testfile.txt', header=T)
sp.mydata <- mydata
coordinates(sp.mydata) <- ~long+lat
class(sp.mydata)
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
现在计算点之间的成对距离
d <- gDistance(sp.mydata, byid=T)
找到第二个最短距离(最近距离指向自身,因此使用第二个最短距离)
min.d <- apply(d, 1, function(x) order(x, decreasing=F)[2])
使用所需变量构建新数据框
newdata <- cbind(mydata, mydata[min.d,], apply(d, 1, function(x) sort(x, decreasing=F)[2]))
colnames(newdata) <- c(colnames(mydata), 'neighbor', 'n.lat', 'n.long', 'n.area', 'n.canopy', 'n.avg.depth', 'distance')
newdata
pond lat long area canopy avg.depth neighbor n.lat n.long n.area n.canopy n.avg.depth
6 A10 41.95928 -72.14605 1500 66 60.61538 Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222
3 AA006 41.96431 -72.12100 250 0 57.77778 Blacksmith 41.95508 -72.12380 361 77 71.31250
2 Blacksmith 41.95508 -72.12380 361 77 71.31250 AA006 41.96431 -72.12100 250 0 57.77778
5 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000
4 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444
5.1 Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000
6.1 Boulder 41.91822 -72.14978 1392 98 43.53333 Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222
distance
6 0.0085954872
3 0.0096462277
2 0.0096462277
5 0.0003059412
4 0.0003059412
5.1 0.0004548626
6.1 0.0374480316
编辑:如果坐标为度,并且您想以千米为单位计算距离,请使用包geosphere
library(geosphere)
d <- distm(sp.mydata)
# rest is the same
如果点遍布地球并且坐标为度
,则应该提供更好的结果答案 1 :(得分:1)
由@Zbynek提出的解决方案是相当不错的,但如果你像我一样寻找两公里之间的距离,我建议这个解决方案。
earth.dist<-function(lat1,long1,lat2,long2){
rad <- pi/180
a1 <- lat1 * rad
a2 <- long1 * rad
b1 <- lat2 * rad
b2 <- long2 * rad
dlat <- b1-a1
dlon<- b2-a2
a <- (sin(dlat/2))^2 +cos(a1)*cos(b1)*(sin(dlon/2))^2
c <- 2*atan2(sqrt(a),sqrt(1-a))
R <- 6378.145
dist <- R *c
return(dist)
}
Dist <- matrix(0,ncol=length(mydata),nrow=length(mydata.sp))
for (i in 1:length(mydata)){
for(j in 1:length(mydata.sp)){
Dist[i,j] <- earth.dist(mydata$lat[i],mydata$long[i],mydata.sp$lat[j],mydata.sp$long[j])
}}
DDD <- matrix(0, ncol=5,nrow=ncol(Dist)) ### RECTIFY the nb of col by the number of variable you want
for(i in 1:ncol(Dist)){
sub<- sort(Dist[,i])[2]
DDD[i,1] <- names(sub)
DDD[i,2] <- sub
DDD[i,3] <- rownames(Dist)[i]
sub_neig_atr <- Coord[Coord$ID==names(sub),]
DDD[i,4] <- sub_neig_atr$area
DDD[i,5] <- sub_neig_atr$canopy
### Your can add any variable you want here
}
DDD <- as.data.frame(DDD)
names(DDD)<-c("neigboor_ID","distance","pond","n.area","n.canopy")
data <- merge(mydata,DDD, by="pond")
如果您的坐标很长且纬度很近,您最终会得到以km为单位的距离。
有什么建议让它更好吗?
答案 2 :(得分:1)
我在下面添加了使用较新的sf
软件包的替代解决方案,以供有兴趣并立即访问此页面的人员使用(与我一样)。
首先,加载数据并创建sf
对象。
# Using sf
mydata <- structure(
list(pond = c("A10", "AA006", "Blacksmith", "Borrow.Pit.1",
"Borrow.Pit.2", "Borrow.Pit.3", "Boulder"),
lat = c(41.95928, 41.96431, 41.95508, 41.95601, 41.95571, 41.95546,
41.918223),
long = c(-72.14605, -72.121, -72.123803, -72.15419, -72.15413,
-72.15375, -72.14978),
area = c(1500L, 250L, 361L, 0L, 0L, 0L, 1392L),
canopy = c(66L, 0L, 77L, 0L, 0L, 0L, 98L),
avg.depth = c(60.61538462, 57.77777778, 71.3125, 41.44444444,
37.7, 29.22222222, 43.53333333)),
class = "data.frame", row.names = c(NA, -7L))
library(sf)
data_sf <- st_as_sf(mydata, coords = c("long", "lat"),
# Change to your CRS
crs = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
st_is_longlat(data_sf)
sf::st_distance
使用纬度/经度数据时,使用大圆距离计算以米为单位的距离矩阵。
dist.mat <- st_distance(data_sf) # Great Circle distance since in lat/lon
# Number within 1.5km: Subtract 1 to exclude the point itself
num.1500 <- apply(dist.mat, 1, function(x) {
sum(x < 1500) - 1
})
# Calculate nearest distance
nn.dist <- apply(dist.mat, 1, function(x) {
return(sort(x, partial = 2)[2])
})
# Get index for nearest distance
nn.index <- apply(dist.mat, 1, function(x) { order(x, decreasing=F)[2] })
n.data <- mydata
colnames(n.data)[1] <- "neighbor"
colnames(n.data)[2:ncol(n.data)] <-
paste0("n.", colnames(n.data)[2:ncol(n.data)])
mydata2 <- data.frame(mydata,
n.data[nn.index, ],
n.distance = nn.dist,
radius1500 = num.1500)
rownames(mydata2) <- seq(nrow(mydata2))
mydata2
pond lat long area canopy avg.depth neighbor n.lat n.long n.area n.canopy
1 A10 41.95928 -72.14605 1500 66 60.61538 Borrow.Pit.1 41.95601 -72.15419 0 0
2 AA006 41.96431 -72.12100 250 0 57.77778 Blacksmith 41.95508 -72.12380 361 77
3 Blacksmith 41.95508 -72.12380 361 77 71.31250 AA006 41.96431 -72.12100 250 0
4 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444 Borrow.Pit.2 41.95571 -72.15413 0 0
5 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000 Borrow.Pit.1 41.95601 -72.15419 0 0
6 Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222 Borrow.Pit.2 41.95571 -72.15413 0 0
7 Boulder 41.91822 -72.14978 1392 98 43.53333 Borrow.Pit.3 41.95546 -72.15375 0 0
n.avg.depth n.distance radius1500
1 41.44444 766.38426 3
2 71.31250 1051.20527 1
3 57.77778 1051.20527 1
4 37.70000 33.69099 3
5 41.44444 33.69099 3
6 37.70000 41.99576 3
7 29.22222 4149.07406 0
要在计算距离后获得最近的邻居,可以将sort()
与partial = 2
参数一起使用。根据数据量的不同,这可能比以前的解决方案中使用order
的速度要快得多。软件包Rfast
可能更快,但我避免在此处包括其他软件包。有关各种解决方案的讨论和基准测试,请参见此相关文章:https://stackoverflow.com/a/53144760/12265198
答案 3 :(得分:0)
我在下面添加了使用spatialrisk软件包的解决方案。此软件包中的关键功能是用C ++(Rcpp)编写的,因此非常快。
首先,加载数据:
df <- data.frame(pond = c("A10", "AA006", "Blacksmith", "Borrow.Pit.1",
"Borrow.Pit.2", "Borrow.Pit.3", "Boulder"),
lat = c(41.95928, 41.96431, 41.95508, 41.95601,
41.95571, 41.95546, 41.918223),
long = c(-72.14605, -72.121, -72.123803, -72.15419,
-72.15413, -72.15375, -72.14978),
area = c(1500, 250, 361, 0, 0, 0, 1392),
canopy = c(66, 0, 77, 0, 0, 0, 98),
avg.depth = c(60.61538462, 57.77777778, 71.3125, 41.44444444,
37.7, 29.22222222, 43.53333333))
spatialrisk :: points_in_circle()函数计算从中心点开始的半径范围内的观测值。请注意,距离是使用Haversine公式计算的。由于输出的每个元素都是一个数据帧,因此使用purrr :: map_dfr将它们行绑定在一起:
ans1 <- purrr::map2_dfr(df$long, df$lat,
~spatialrisk::points_in_circle(df, .x, .y,
lon = long,
radius = 100000)[2,])
colnames(ans1) <- c("neighbor", "n.lat", "n.long", "n.area",
"n.canopy", "n.avg.depth", "distance_m")
neighbor n.lat n.long n.area n.canopy n.avg.depth distance_m
1 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444 765.87823
2 Blacksmith 41.95508 -72.12380 361 77 71.31250 1053.35200
3 AA006 41.96431 -72.12100 250 0 57.77778 1053.35200
4 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000 33.76321
5 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444 33.76321
6 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000 42.00128
7 Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222 4158.21978
现在计算距离目标池塘1500m以内的池塘数量。空间风险::浓度()函数对从中心点开始的半径范围内的观测值求和。从池塘数量中减去1排除池塘本身。
df$npond <- 1
radius1500 <- spatialrisk::concentration(df, df, npond, lon_sub = long,
lon_full = long, radius = 1500,
display_progress = FALSE)$concentration - 1
将数据帧绑定在一起:
cbind(df, ans1, radius1500)
pond lat long area canopy avg.depth neighbor n.lat n.long n.area n.canopy n.avg.depth distance_m radius1500
1 A10 41.95928 -72.14605 1500 66 60.61538 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444 765.87823 3
2 AA006 41.96431 -72.12100 250 0 57.77778 Blacksmith 41.95508 -72.12380 361 77 71.31250 1053.35200 1
3 Blacksmith 41.95508 -72.12380 361 77 71.31250 AA006 41.96431 -72.12100 250 0 57.77778 1053.35200 1
4 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000 33.76321 3
5 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000 Borrow.Pit.1 41.95601 -72.15419 0 0 41.44444 33.76321 3
6 Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222 Borrow.Pit.2 41.95571 -72.15413 0 0 37.70000 42.00128 3
7 Boulder 41.91822 -72.14978 1392 98 43.53333 Borrow.Pit.3 41.95546 -72.15375 0 0 29.22222 4158.21978 0
答案 4 :(得分:0)
在 Rfast 中,有一个名为“ dista” 的函数,该函数仅计算当前的欧几里得距离或曼哈顿距离。它提供了计算k个最小距离的选项。或者,它可以返回具有最小距离的观测索引。余弦距离与欧几里得距离基本相同(我认为不包括常数2)。
答案 5 :(得分:0)
另一个答案虽然可能较慢,但可能对dplyr上瘾者有直观的吸引力。
您可以为纬度/经度的每种可能组合创建一个巨型网格,然后使用地理球找到距离最小的网格。
在示例中,您有两个具有不同点的数据集进行比较-但是您可以通过复制第一个数据集轻松地对其进行调整。
library(tidyverse)
library(geosphere)
library(data.table)
#This function creates a big dataframe with every possible combination
expand.grid.df <- function(...) Reduce(function(...) merge(..., by=NULL), list(...))
shortest_distance <- expand.grid.df(df1,df2) %>%
mutate(distance = distHaversine(p1 = cbind(lon_2,lat_2),
p2 = cbind(lon,lat))) %>%
group_by(ACCIDENT_NO) %>%
slice(which.min(distance))