Java 8嵌套循环与流和&性能

时间:2014-02-23 13:38:26

标签: java performance java-8 nested-loops java-stream

为了练习Java 8流,我尝试将以下嵌套循环转换为Java 8流API。它计算a ^ b(a,b <100)的最大数字总和,并在我的Core i5 760上花费~0.135s。

public static int digitSum(BigInteger x)
{
    int sum = 0;
    for(char c: x.toString().toCharArray()) {sum+=Integer.valueOf(c+"");}
    return sum;
}

@Test public void solve()
    {
        int max = 0;
        for(int i=1;i<100;i++)
            for(int j=1;j<100;j++)
                max = Math.max(max,digitSum(BigInteger.valueOf(i).pow(j)));
        System.out.println(max);
    }

我的解决方案,我希望因为并列主义而更快,实际上需要0.25秒(0.19秒没有parallel()):

int max =   IntStream.range(1,100).parallel()
            .map(i -> IntStream.range(1, 100)
            .map(j->digitSum(BigInteger.valueOf(i).pow(j)))
            .max().getAsInt()).max().getAsInt();

我的问题

  • 我做了正确的转换,还是有更好的方法将嵌套循环转换为流计算?
  • 为什么流变种比旧变种慢得多?
  • 为什么parallel()语句实际上将时间从0.19s增加到0.25s?

我知道microbenchmarks是脆弱的,并行性只对大问题是值得的,但对于CPU来说,甚至0.1s都是永恒的,对吗?

更新

我使用Eclipse Kepler中的Junit 4框架进行测量(它显示了执行测试所需的时间)。

我的结果为a,b <1000而不是100:

  • 传统循环186s
  • 顺序流193s
  • parallel stream 55s

更新2 sum+=Integer.valueOf(c+"");替换为sum+= c - '0';(感谢彼得!)将并行方法的整整10秒钟削减,使其达到45秒。没想到会有如此大的性能影响!

此外,减少与CPU内核数量的并行性(在我的情况下为4)并没有做太多,因为它将时间减少到44.8s(是的,它增加了a和b = 0,但我认为这赢得了'对性能影响很大):

int max = IntStream.range(0, 3).parallel().
          .map(m -> IntStream.range(0,250)
          .map(i -> IntStream.range(1, 1000)
          .map(j->.digitSum(BigInteger.valueOf(250*m+i).pow(j)))
          .max().getAsInt()).max().getAsInt()).max().getAsInt();

2 个答案:

答案 0 :(得分:22)

我根据您的代码创建了一个快速而肮脏的微基准测试。结果是:

  

循环:3192
  lambda:3140
  lambda parallel:868

因此循环和lambda是等效的,并行流显着提高了性能。由于您的基准测试方法,我怀疑您的结果不可靠。

public static void main(String[] args) {
    int sum = 0;

    //warmup
    for (int i = 0; i < 100; i++) {
        solve();
        solveLambda();
        solveLambdaParallel();
    }

    {
        long start = System.nanoTime();
        for (int i = 0; i < 100; i++) {
            sum += solve();
        }
        long end = System.nanoTime();
        System.out.println("loop: " + (end - start) / 1_000_000);
    }
    {
        long start = System.nanoTime();
        for (int i = 0; i < 100; i++) {
            sum += solveLambda();
        }
        long end = System.nanoTime();
        System.out.println("lambda: " + (end - start) / 1_000_000);
    }
    {
        long start = System.nanoTime();
        for (int i = 0; i < 100; i++) {
            sum += solveLambdaParallel();
        }
        long end = System.nanoTime();
        System.out.println("lambda parallel : " + (end - start) / 1_000_000);
    }
    System.out.println(sum);
}

public static int digitSum(BigInteger x) {
    int sum = 0;
    for (char c : x.toString().toCharArray()) {
        sum += Integer.valueOf(c + "");
    }
    return sum;
}

public static int solve() {
    int max = 0;
    for (int i = 1; i < 100; i++) {
        for (int j = 1; j < 100; j++) {
            max = Math.max(max, digitSum(BigInteger.valueOf(i).pow(j)));
        }
    }
    return max;
}

public static int solveLambda() {
    return  IntStream.range(1, 100)
            .map(i -> IntStream.range(1, 100).map(j -> digitSum(BigInteger.valueOf(i).pow(j))).max().getAsInt())
            .max().getAsInt();
}

public static int solveLambdaParallel() {
    return  IntStream.range(1, 100)
            .parallel()
            .map(i -> IntStream.range(1, 100).map(j -> digitSum(BigInteger.valueOf(i).pow(j))).max().getAsInt())
            .max().getAsInt();
}

我也用jmh运行它,这比手动测试更可靠。结果与上述一致(每次呼叫的微秒数):

Benchmark                                Mode   Mean        Units
c.a.p.SO21968918.solve                   avgt   32367.592   us/op
c.a.p.SO21968918.solveLambda             avgt   31423.123   us/op
c.a.p.SO21968918.solveLambdaParallel     avgt   8125.600    us/op

答案 1 :(得分:3)

您遇到的问题是您正在寻找次优代码。当您拥有可能经过大量优化的代码时,您非常依赖于JVM是否足够智能来优化代码。循环已经存在很长时间并且更好理解。

你的循环代码有一个很大的不同,就是你的工作集非常小。您一次只考虑一个最大数字总和。这意味着代码是缓存友好的,并且您拥有非常短暂的对象。在stream()情况下,您正在构建集合,在任何时候工作集中都有更多集合,使用更多缓存,并且开销更大。我希望您的GC时间更长和/或更频繁。

  

为什么流变量比旧变量慢得多?

在开发Java之前,循环已经很好地优化了。它们可以非常有效地映射到硬件。流是相当新的,并没有大幅优化。

  

为什么parallel()语句实际上将时间从0.19s增加到0.25s?

您很可能在共享资源上有瓶颈。你创造了相当多的垃圾,但这通常是相当并发的。使用更多线程,只能保证你会有更多的开销,但它并不能确保你可以利用你拥有的额外CPU能力。