Postgres慢查询(慢速索引扫描)

时间:2014-02-23 13:04:58

标签: sql postgresql postgresql-9.2

我有一个包含300万行和1.3GB大小的表。在我的笔记本电脑上使用4GB RAM运行Postgres 9.3。

explain analyze
select act_owner_id from cnt_contacts where act_owner_id = 2

我在cnt_contacts.act_owner_id上有btree键定义为:

CREATE INDEX cnt_contacts_idx_act_owner_id 
   ON public.cnt_contacts USING btree (act_owner_id, status_id);

查询在大约5秒内运行

Bitmap Heap Scan on cnt_contacts  (cost=2598.79..86290.73 rows=6208 width=4) (actual time=5865.617..5875.302 rows=5444 loops=1)
  Recheck Cond: (act_owner_id = 2)
  ->  Bitmap Index Scan on cnt_contacts_idx_act_owner_id  (cost=0.00..2597.24 rows=6208 width=0) (actual time=5865.407..5865.407 rows=5444 loops=1)
        Index Cond: (act_owner_id = 2)
Total runtime: 5875.684 ms"
为什么要这么久?

work_mem = 1024MB; 
shared_buffers = 128MB;
effective_cache_size = 1024MB
seq_page_cost = 1.0         # measured on an arbitrary scale
random_page_cost = 15.0         # same scale as above
cpu_tuple_cost = 3.0

2 个答案:

答案 0 :(得分:2)

您正在笔记本电脑上选择分散在1.3 GB表格中的5444条记录。您期待需要多长时间?

看起来你的索引没有被缓存,因为它无法在缓存中维持,或者因为这是你第一次使用它的那部分。如果重复运行完全相同的查询会发生什么?相同的查询但具有不同的常量?

在“explain(analyze,buffers)”下运行查询将有助于获取其他信息,特别是如果您首先启用track_io_timing。

答案 1 :(得分:2)

好的,PG有大表,索引和长时间执行。让我们思考如何改善计划和减少时间的方法。您编写和删除行。 PG写和删除元组,表和索引可以膨胀。为了良好的搜索,PG将索引加载到共享缓冲区并且您需要尽可能保持索引清洁。选择PG读取共享缓冲区而不是搜索。尝试设置缓冲区内存并减少索引和表膨胀,保持数据库清理。

你做什么和思考:

1)只需检查索引重复项,并且您的索引具有良好的选择:

 WITH table_scans as (
    SELECT relid,
        tables.idx_scan + tables.seq_scan as all_scans,
        ( tables.n_tup_ins + tables.n_tup_upd + tables.n_tup_del ) as writes,
                pg_relation_size(relid) as table_size
        FROM pg_stat_user_tables as tables
),
all_writes as (
    SELECT sum(writes) as total_writes
    FROM table_scans
),
indexes as (
    SELECT idx_stat.relid, idx_stat.indexrelid,
        idx_stat.schemaname, idx_stat.relname as tablename,
        idx_stat.indexrelname as indexname,
        idx_stat.idx_scan,
        pg_relation_size(idx_stat.indexrelid) as index_bytes,
        indexdef ~* 'USING btree' AS idx_is_btree
    FROM pg_stat_user_indexes as idx_stat
        JOIN pg_index
            USING (indexrelid)
        JOIN pg_indexes as indexes
            ON idx_stat.schemaname = indexes.schemaname
                AND idx_stat.relname = indexes.tablename
                AND idx_stat.indexrelname = indexes.indexname
    WHERE pg_index.indisunique = FALSE
),
index_ratios AS (
SELECT schemaname, tablename, indexname,
    idx_scan, all_scans,
    round(( CASE WHEN all_scans = 0 THEN 0.0::NUMERIC
        ELSE idx_scan::NUMERIC/all_scans * 100 END),2) as index_scan_pct,
    writes,
    round((CASE WHEN writes = 0 THEN idx_scan::NUMERIC ELSE idx_scan::NUMERIC/writes END),2)
        as scans_per_write,
    pg_size_pretty(index_bytes) as index_size,
    pg_size_pretty(table_size) as table_size,
    idx_is_btree, index_bytes
    FROM indexes
    JOIN table_scans
    USING (relid)
),
index_groups AS (
SELECT 'Never Used Indexes' as reason, *, 1 as grp
FROM index_ratios
WHERE
    idx_scan = 0
    and idx_is_btree
UNION ALL
SELECT 'Low Scans, High Writes' as reason, *, 2 as grp
FROM index_ratios
WHERE
    scans_per_write <= 1
    and index_scan_pct < 10
    and idx_scan > 0
    and writes > 100
    and idx_is_btree
UNION ALL
SELECT 'Seldom Used Large Indexes' as reason, *, 3 as grp
FROM index_ratios
WHERE
    index_scan_pct < 5
    and scans_per_write > 1
    and idx_scan > 0
    and idx_is_btree
    and index_bytes > 100000000
UNION ALL
SELECT 'High-Write Large Non-Btree' as reason, index_ratios.*, 4 as grp 
FROM index_ratios, all_writes
WHERE
    ( writes::NUMERIC / ( total_writes + 1 ) ) > 0.02
    AND NOT idx_is_btree
    AND index_bytes > 100000000
ORDER BY grp, index_bytes DESC )
SELECT reason, schemaname, tablename, indexname,
    index_scan_pct, scans_per_write, index_size, table_size
FROM index_groups;

2)检查表格和索引是否膨胀?

     SELECT
        current_database(), schemaname, tablename, /*reltuples::bigint, relpages::bigint, otta,*/
        ROUND((CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages::FLOAT/otta END)::NUMERIC,1) AS tbloat,
        CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::BIGINT END AS wastedbytes,
      iname, /*ituples::bigint, ipages::bigint, iotta,*/
      ROUND((CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages::FLOAT/iotta END)::NUMERIC,1) AS ibloat,
      CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS wastedibytes
    FROM (
      SELECT
        schemaname, tablename, cc.reltuples, cc.relpages, bs,
        CEIL((cc.reltuples*((datahdr+ma-
          (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::FLOAT)) AS otta,
        COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,
        COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::FLOAT)),0) AS iotta -- very rough approximation, assumes all cols
      FROM (
        SELECT
          ma,bs,schemaname,tablename,
          (datawidth+(hdr+ma-(CASE WHEN hdr%ma=0 THEN ma ELSE hdr%ma END)))::NUMERIC AS datahdr,
          (maxfracsum*(nullhdr+ma-(CASE WHEN nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2
        FROM (
          SELECT
            schemaname, tablename, hdr, ma, bs,
            SUM((1-null_frac)*avg_width) AS datawidth,
            MAX(null_frac) AS maxfracsum,
            hdr+(
              SELECT 1+COUNT(*)/8
              FROM pg_stats s2
              WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND s2.tablename = s.tablename
            ) AS nullhdr
          FROM pg_stats s, (
            SELECT
              (SELECT current_setting('block_size')::NUMERIC) AS bs,
              CASE WHEN SUBSTRING(v,12,3) IN ('8.0','8.1','8.2') THEN 27 ELSE 23 END AS hdr,
              CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma
            FROM (SELECT version() AS v) AS foo
          ) AS constants
          GROUP BY 1,2,3,4,5
        ) AS foo
      ) AS rs
      JOIN pg_class cc ON cc.relname = rs.tablename
      JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = rs.schemaname AND nn.nspname <> 'information_schema'
      LEFT JOIN pg_index i ON indrelid = cc.oid
      LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid
    ) AS sml
    ORDER BY wastedbytes DESC

3)你是否从硬盘清理未使用的元组?真空时间到了吗?

SELECT 
    relname AS TableName
    ,n_live_tup AS LiveTuples
    ,n_dead_tup AS DeadTuples
FROM pg_stat_user_tables;

4)想一想。如果db中有10条记录,10条中有8条id = 2,那就意味着你的索引选择性很差,这样PG就会扫描所有8条记录。但是你尝试使用id!= 2 index会很好用。尝试设置好的选择索引。

5)使用适当的列类型获取数据。如果你可以为你的列使用更少的kb类型,只需转换它。

6)只需检查数据库和条件。检查一下这个开始page 只是尝试在表中看到数据库中未使用的数据,必须清理索引,检查索引的选择性。尝试使用其他brin索引获取数据,尝试重新创建索引。