我将包含150,000行的csv文件读入pandas数据帧。此数据框有一个字段“日期”,日期格式为 yyyy-mm-dd 。我想从中提取月,日和年,并分别复制到数据框的列,'月','日'和'年'。对于几百条记录,以下两种方法都可以正常工作,但对于150,000条记录,这两种方法都需要花费很长的时间来执行。对于100,000多条记录,有更快的方法吗?
第一种方法:
df = pandas.read_csv(filename)
for i in xrange(len(df)):
df.loc[i,'Day'] = int(df.loc[i,'Date'].split('-')[2])
第二种方法:
df = pandas.read_csv(filename)
for i in xrange(len(df)):
df.loc[i,'Day'] = datetime.strptime(df.loc[i,'Date'], '%Y-%m-%d').day
谢谢。
答案 0 :(得分:30)
在0.15.0中,您将能够使用新的.dt访问器在语法上做到这一点。
In [36]: df = DataFrame(date_range('20000101',periods=150000,freq='H'),columns=['Date'])
In [37]: df.head(5)
Out[37]:
Date
0 2000-01-01 00:00:00
1 2000-01-01 01:00:00
2 2000-01-01 02:00:00
3 2000-01-01 03:00:00
4 2000-01-01 04:00:00
[5 rows x 1 columns]
In [38]: %timeit f(df)
10 loops, best of 3: 22 ms per loop
In [39]: def f(df):
df = df.copy()
df['Year'] = DatetimeIndex(df['Date']).year
df['Month'] = DatetimeIndex(df['Date']).month
df['Day'] = DatetimeIndex(df['Date']).day
return df
....:
In [40]: f(df).head()
Out[40]:
Date Year Month Day
0 2000-01-01 00:00:00 2000 1 1
1 2000-01-01 01:00:00 2000 1 1
2 2000-01-01 02:00:00 2000 1 1
3 2000-01-01 03:00:00 2000 1 1
4 2000-01-01 04:00:00 2000 1 1
[5 rows x 4 columns]
从0.15.0开始(2014年9月底发布),现在可以使用新的.dt访问器进行以下操作:
df['Year'] = df['Date'].dt.year
df['Month'] = df['Date'].dt.month
df['Day'] = df['Date'].dt.day
答案 1 :(得分:1)
This is the cleanest answer I've found.
df = df.assign(**{t:getattr(df.data.dt,t) for t in nomtimes})
In [30]: df = pd.DataFrame({'data':pd.date_range(start, end)})
In [31]: df.head()
Out[31]:
data
0 2011-01-01
1 2011-01-02
2 2011-01-03
3 2011-01-04
4 2011-01-05
nomtimes = ["year", "hour", "month", "dayofweek"]
df = df.assign(**{t:getattr(df.data.dt,t) for t in nomtimes})
In [33]: df.head()
Out[33]:
data dayofweek hour month year
0 2011-01-01 5 0 1 2011
1 2011-01-02 6 0 1 2011
2 2011-01-03 0 0 1 2011
3 2011-01-04 1 0 1 2011
4 2011-01-05 2 0 1 2011
答案 2 :(得分:0)
我使用下面的代码,这对我很有用
df['Year']=[d.split('-')[0] for d in df.Date]
df['Month']=[d.split('-')[1] for d in df.Date]
df['Day']=[d.split('-')[2] for d in df.Date]
df.head(5)