Python无法完成一个句子

时间:2014-02-22 00:42:05

标签: python python-2.7 nltk

关于如何对一个句子进行标记,有很多指南,但我没有找到任何关于如何做相反的事情。

 import nltk
 words = nltk.word_tokenize("I've found a medicine for my disease.")
 result I get is: ['I', "'ve", 'found', 'a', 'medicine', 'for', 'my', 'disease', '.']

是否有任何功能,而不是将标记化的句子恢复为原始状态。由于某种原因,函数tokenize.untokenize()不起作用。

编辑:

我知道我可以这样做,这可能解决了这个问题,但我很好奇是否有一个集成功能:

result = ' '.join(sentence).replace(' , ',',').replace(' .','.').replace(' !','!')
result = result.replace(' ?','?').replace(' : ',': ').replace(' \'', '\'')   

11 个答案:

答案 0 :(得分:37)

如今(2016年),nltk中有一个内置的去语音器 - 它被称为http://usejsdoc.org/tags-typedef.html

data = ["Hi", ",", "my", "name", "is", "Bob", "!"]

from nltk.tokenize.moses import MosesDetokenizer

detokenizer = MosesDetokenizer()

detokenizer.detokenize(data, return_str=True)
# u'Hi, my name is Bob!'

您需要nltk >= 3.2.2才能使用分离器。

答案 1 :(得分:10)

要从word_tokenize转发nltk,我建议您查看http://www.nltk.org/_modules/nltk/tokenize/punkt.html#PunktLanguageVars.word_tokenize并进行一些逆向工程。

如果没有在nltk上做疯狂的黑客攻击,你可以试试这个:

>>> import nltk
>>> import string
>>> nltk.word_tokenize("I've found a medicine for my disease.")
['I', "'ve", 'found', 'a', 'medicine', 'for', 'my', 'disease', '.']
>>> tokens = nltk.word_tokenize("I've found a medicine for my disease.")
>>> "".join([" "+i if not i.startswith("'") and i not in string.punctuation else i for i in tokens]).strip()
"I've found a medicine for my disease."

答案 2 :(得分:2)

使用here

中的token_utils.untokenize
import re
def untokenize(words):
    """
    Untokenizing a text undoes the tokenizing operation, restoring
    punctuation and spaces to the places that people expect them to be.
    Ideally, `untokenize(tokenize(text))` should be identical to `text`,
    except for line breaks.
    """
    text = ' '.join(words)
    step1 = text.replace("`` ", '"').replace(" ''", '"').replace('. . .',  '...')
    step2 = step1.replace(" ( ", " (").replace(" ) ", ") ")
    step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2)
    step4 = re.sub(r' ([.,:;?!%]+)$', r"\1", step3)
    step5 = step4.replace(" '", "'").replace(" n't", "n't").replace(
         "can not", "cannot")
    step6 = step5.replace(" ` ", " '")
    return step6.strip()

 tokenized = ['I', "'ve", 'found', 'a', 'medicine', 'for', 'my','disease', '.']
 untokenize(tokenized)
 "I've found a medicine for my disease."

答案 3 :(得分:2)

from nltk.tokenize.treebank import TreebankWordDetokenizer
TreebankWordDetokenizer().detokenize(['the', 'quick', 'brown'])
# 'The quick brown'

答案 4 :(得分:0)

tokenize.untokenize不起作用的原因是因为它需要的信息不仅仅是单词。以下是使用tokenize.untokenize的示例程序:

from StringIO import StringIO
import tokenize

sentence = "I've found a medicine for my disease.\n"
tokens = tokenize.generate_tokens(StringIO(sentence).readline)
print tokenize.untokenize(tokens)


其他帮助: Tokenize - Python Docs | Potential Problem

答案 5 :(得分:0)

我建议在标记化中保留偏移量:(标记,偏移量)。 我认为,这些信息对于处理原始句子很有用。

import re
from nltk.tokenize import word_tokenize

def offset_tokenize(text):
    tail = text
    accum = 0
    tokens = self.tokenize(text)
    info_tokens = []
    for tok in tokens:
        scaped_tok = re.escape(tok)
        m = re.search(scaped_tok, tail)
        start, end = m.span()
        # global offsets
        gs = accum + start
        ge = accum + end
        accum += end
        # keep searching in the rest
        tail = tail[end:]
        info_tokens.append((tok, (gs, ge)))
    return info_token

sent = '''I've found a medicine for my disease.

This is line:3.'''

toks_offsets = offset_tokenize(sent)

for t in toks_offsets:
(tok, offset) = t
print (tok == sent[offset[0]:offset[1]]), tok, sent[offset[0]:offset[1]]

给出:

True I I
True 've 've
True found found
True a a
True medicine medicine
True for for
True my my
True disease disease
True . .
True This This
True is is
True line:3 line:3
True . .

答案 6 :(得分:0)

我正在使用以下代码,没有任何主要的库函数用于解毒目的。我正在使用一些特定标记的去标记

_SPLITTER_ = r"([-.,/:!?\";)(])"

def basic_detokenizer(sentence):
""" This is the basic detokenizer helps us to resolves the issues we created by  our tokenizer"""
detokenize_sentence =[]
words = sentence.split(' ')
pos = 0
while( pos < len(words)):
    if words[pos] in '-/.' and pos > 0 and pos < len(words) - 1:
        left = detokenize_sentence.pop()
        detokenize_sentence.append(left +''.join(words[pos:pos + 2]))
        pos +=1
    elif  words[pos] in '[(' and pos < len(words) - 1:
        detokenize_sentence.append(''.join(words[pos:pos + 2]))   
        pos +=1        
    elif  words[pos] in ']).,:!?;' and pos > 0:
        left  = detokenize_sentence.pop()
        detokenize_sentence.append(left + ''.join(words[pos:pos + 1]))            
    else:
        detokenize_sentence.append(words[pos])
    pos +=1
return ' '.join(detokenize_sentence)

答案 7 :(得分:0)

对我来说,当我安装python nltk 3.2.5时,它有用,

pip install -U nltk

然后,

import nltk
nltk.download('perluniprops')

from nltk.tokenize.moses import MosesDetokenizer

如果你正在使用内部pandas数据帧,那么

df['detoken']=df['token_column'].apply(lambda x: detokenizer.detokenize(x, return_str=True))

答案 8 :(得分:0)

没有简单答案的原因是您实际上需要字符串中原始标记的跨度位置。如果您没有,并且您没有对原始标记进行反向工程,则重新组装的字符串将基于对使用的标记规则的猜测。如果您的令牌生成器没有给您带来跨度,那么如果您有三件事,仍然可以这样做:

1)原始字符串

2)原始令牌

3)修改过的令牌(假设您已经以某种方式更改了令牌,因为这是我可以想到的唯一应用程序,如果您已经拥有#1)

使用原始令牌集来识别跨度(如果令牌生成器这样做会更好吗?)并从后到前修改字符串,以使跨度不会随您而改变。

在这里,我正在使用TweetTokenizer,但不要紧,只要您使用的令牌化程序不会更改令牌的值,以使它们实际上不在原始字符串中即可。

tokenizer=nltk.tokenize.casual.TweetTokenizer()
string="One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a horrible vermin."
tokens=tokenizer.tokenize(string)
replacement_tokens=list(tokens)
replacement_tokens[-3]="cute"

def detokenize(string,tokens,replacement_tokens):
    spans=[]
    cursor=0
    for token in tokens:
        while not string[cursor:cursor+len(token)]==token and cursor<len(string):
            cursor+=1        
        if cursor==len(string):break
        newcursor=cursor+len(token)
        spans.append((cursor,newcursor))
        cursor=newcursor
    i=len(tokens)-1
    for start,end in spans[::-1]:
        string=string[:start]+replacement_tokens[i]+string[end:]
        i-=1
    return string

>>> detokenize(string,tokens,replacement_tokens)
'One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a cute vermin.'

答案 9 :(得分:-2)

使用join功能:

您可以执行' '.join(words)来取回原始字符串。

答案 10 :(得分:-2)

最简单,最直观的方法。 token_list也可以是列表列表。

s=[]
for i in token_list:
    s.append(" ".join(i))