我正在尝试将重叠的起始时间戳合并为单个时间跨度。 SO上也有类似的问题here。我想为数据中的每个用户单独合并时间戳。
示例数据:
-- drop table if exists app_log;
create table app_log (
user_id int,
login_time timestamp,
logout_time timestamp
);
insert into app_log values
(1, '2014-01-01 08:00', '2014-01-01 10:00'), /* here we start */
(1, '2014-01-01 09:10', '2014-01-01 09:59'), /* fully included in previous interval */
(1, '2014-01-01 10:00', '2014-01-01 10:48'), /* continuing first interval */
(1, '2014-01-01 10:40', '2014-01-01 10:49'), /* continuing previous interval */
(1, '2014-01-01 10:55', '2014-01-01 11:00'), /* isolated interval */
(2, '2014-01-01 09:00', '2014-01-01 11:00'), /* 2nd user is shifted by one hour */
(2, '2014-01-01 10:10', '2014-01-01 10:59'), /* to simulate overlaps with 1st user */
(2, '2014-01-01 11:00', '2014-01-01 11:48'),
(2, '2014-01-01 11:40', '2014-01-01 11:49'),
(2, '2014-01-01 11:55', '2014-01-01 12:00')
;
所需结果:
used_id login_time logout_time
1 2014-01-01 08:00 2014-01-01 10:49 /* Merging first 4 lines */
1 2014-01-01 10:55 2014-01-01 11:00 /* 5 th line is isolated */
2 2014-01-01 09:00 2014-01-01 11:49 /* Merging lines 6-9 */
2 2014-01-01 11:55 2014-01-01 12:00 /* last line is isolated */
我尝试使用mentioned question中提供的解决方案,但即使对于单个用户也不会返回正确的答案:
with recursive
in_data as (select login_time as d1, logout_time as d2 from app_log where user_id = 1)
, dateRanges (ancestorD1, parentD1, d2, iter) as
(
--anchor is first level of collapse
select
d1 as ancestorD1,
d1 as parentD1,
d2,
cast(0 as int) as iter
from in_data
--recurse as long as there is another range to fold in
union all
select
tLeft.ancestorD1,
tRight.d1 as parentD1,
tRight.d2,
iter + 1 as iter
from dateRanges as tLeft join in_data as tRight
--join condition is that the t1 row can be consumed by the recursive row
on tLeft.d2 between tRight.d1 and tRight.d2
--exclude identical rows
and not (tLeft.parentD1 = tRight.d1 and tLeft.d2 = tRight.d2)
)
select
ranges1.*
from dateRanges as ranges1
where not exists (
select 1
from dateRanges as ranges2
where ranges1.ancestorD1 between ranges2.ancestorD1 and ranges2.d2
and ranges1.d2 between ranges2.ancestorD1 and ranges2.d2
and ranges2.iter > ranges1.iter
);
结果:
ancestord1 parentd1 d2 iter
2014-01-01 10:55:00;2014-01-01 10:55:00;2014-01-01 11:00:00;0
2014-01-01 08:00:00;2014-01-01 10:40:00;2014-01-01 10:49:00;2
2014-01-01 09:10:00;2014-01-01 10:40:00;2014-01-01 10:49:00;3
上面的查询有什么问题?我如何扩展它以获得用户的结果?在PostgreSQL中有没有更好的解决这个问题的方法?
答案 0 :(得分:2)
我使用窗口函数和许多嵌套子查询找到了这个example of how to make a 'range aggregate'。我只是通过user_id对它进行了分区和分组,它似乎做了你想做的事情:
SELECT user_id, min(login_time) as login_time, max(logout_time) as logout_time
FROM (
SELECT user_id, login_time, logout_time,
max(new_start) OVER (PARTITION BY user_id ORDER BY login_time, logout_time) AS left_edge
FROM (
SELECT user_id, login_time, logout_time,
CASE
WHEN login_time <= max(lag_logout_time) OVER (
PARTITION BY user_id ORDER BY login_time, logout_time
) THEN NULL
ELSE login_time
END AS new_start
FROM (
SELECT
user_id,
login_time,
logout_time,
lag(logout_time) OVER (PARTITION BY user_id ORDER BY login_time, logout_time) AS lag_logout_time
FROM app_log
) AS s1
) AS s2
) AS s3
GROUP BY user_id, left_edge
ORDER BY user_id, min(login_time)
结果:
user_id | login_time | logout_time
---------+---------------------+---------------------
1 | 2014-01-01 08:00:00 | 2014-01-01 10:49:00
1 | 2014-01-01 10:55:00 | 2014-01-01 11:00:00
2 | 2014-01-01 09:00:00 | 2014-01-01 11:49:00
2 | 2014-01-01 11:55:00 | 2014-01-01 12:00:00
(4 rows)
首先检测每个新范围的开始(由user_id分区),然后按检测范围进行扩展和分组。我发现我必须仔细阅读那篇文章才能理解它!
文章建议通过删除最里面的子查询并更改窗口范围,可以使用Postgresql&gt; = 9.0进行简化,但我无法使其工作。