给出一个算法,该算法将平面中的一系列点(x_1,y_1),(x_2,y_2),....,(x_n,y_n)和整数k作为输入,并返回最佳分段线性函数f由最多k个部分组成,最小化总和平方误差。您可以假设您可以访问算法,该算法通过Θ(n)时间内的一组n个点来计算一个段的总和平方误差。解决方案应使用O(n ^ 2k)时间和O(nk)空间。
任何人都可以帮我解决这个问题吗?非常感谢你!
答案 0 :(得分:3)
(这对你的作业来说已经太晚了,但无论如何都希望它有所帮助。)
首先是仅在k = 4
的python / numpy中进行动态编程,
帮助您了解动态编程的工作原理;
一旦你明白了,为任何k写一个循环应该很容易
此外,Cost[]
是2d矩阵,空间O(n ^ 2);
请参阅最后的注释以获得空间O(n k)
#!/usr/bin/env python
""" split4.py: min-cost split into 4 pieces, dynamic programming k=4 """
from __future__ import division
import numpy as np
__version__ = "2014-03-09 mar denis"
#...............................................................................
def split4( Cost, verbose=1 ):
""" split4.py: min-cost split into 4 pieces, dynamic programming k=4
min Cost[0:a] + Cost[a:b] + Cost[b:c] + Cost[c:n]
Cost[a,b] = error in least-squares line fit to xy[a] .. xy[b] *including b*
or error in lsq horizontal lines, sum (y_j - av y) ^2 for each piece --
o--
o-
o---
o----
| | | |
0 2 5 9
(Why 4 ? to walk through step by step, then put in a loop)
"""
# speedup: maxlen 2 n/k or so
Cost = np.asanyarray(Cost)
n = Cost.shape[1]
# C2 C3 ... costs, J2 J3 ... indices of best splits
J2 = - np.ones(n, dtype=int) # -1, NaN mark undefined / bug
C2 = np.ones(n) * np.NaN
J3 = - np.ones(n, dtype=int)
C3 = np.ones(n) * np.NaN
# best 2-splits of the left 2 3 4 ...
for nleft in range( 1, n ):
J2[nleft] = j = np.argmin([ Cost[0,j-1] + Cost[j,nleft] for j in range( 1, nleft+1 )]) + 1
C2[nleft] = Cost[0,j-1] + Cost[j,nleft]
# an idiom for argmin j, min value c together
# best 3-splits of the left 3 4 5 ...
for nleft in range( 2, n ):
J3[nleft] = j = np.argmin([ C2[j-1] + Cost[j,nleft] for j in range( 2, nleft+1 )]) + 2
C3[nleft] = C2[j-1] + Cost[j,nleft]
# best 4-split of all n --
j4 = np.argmin([ C3[j-1] + Cost[j,n-1] for j in range( 3, n )]) + 3
c4 = C3[j4-1] + Cost[j4,n-1]
j3 = J3[j4]
j2 = J2[j3]
jsplit = np.array([ 0, j2, j3, j4, n ])
if verbose:
print "split4: len %s pos %s cost %.3g" % (np.diff(jsplit), jsplit, c4)
print "split4: J2 %s C2 %s" %(J2, C2)
print "split4: J3 %s C3 %s" %(J3, C3)
return jsplit
#...............................................................................
if __name__ == "__main__":
import random
import sys
import spread
n = 10
ncycle = 2
plot = 0
seed = 0
# run this.py a=1 b=None c=[3] 'd = expr' ... in sh or ipython
for arg in sys.argv[1:]:
exec( arg )
np.set_printoptions( 1, threshold=100, edgeitems=10, linewidth=100, suppress=True )
np.random.seed(seed)
random.seed(seed)
print "\n", 80 * "-"
title = "Dynamic programming least-square horizontal lines %s n %d seed %d" % (
__file__, n, seed)
print title
x = np.arange( n + 0. )
y = np.sin( 2*np.pi * x * ncycle / n )
# synthetic time series ?
print "y: %s av %.3g variance %.3g" % (y, y.mean(), np.var(y))
print "Cost[j,k] = sum (y - av y)^2 --" # len * var y[j:k+1]
Cost = spread.spreads_allij( y )
print Cost # .round().astype(int)
jsplit = split4( Cost )
# split4: len [3 2 3 2] pos [ 0 3 5 8 10]
if plot:
import matplotlib.pyplot as pl
title += "\n lengths: %s" % np.diff(jsplit)
pl.title( title )
pl.plot( y )
for js, js1 in zip( jsplit[:-1], jsplit[1:] ):
if js1 <= js: continue
yav = y[js:js1].mean() * np.ones( js1 - js + 1 )
pl.plot( np.arange( js, js1 + 1 ), yav )
# pl.legend()
pl.show()
然后,以下代码仅对水平线Cost[]
,斜率0;
将它延伸到任何斜坡的线段,在时间O(n),留作练习。
""" spreads( all y[:j] ) in time O(n)
define spread( y[] ) = sum (y - average y)^2
e.g. spread of 24 hourly temperatures y[0:24] i.e. y[0] .. y[23]
around a horizontal line at the average temperature
(spread = 0 for constant temperature,
24 c^2 for constant + [c -c c -c ...],
24 * variance(y) )
How fast can one compute all 24 spreads
1 hour (midnight to 1 am), 2 hours ... all 24 ?
A simpler problem: compute all 24 averages in time O(n):
N = np.arange( 1, len(y)+1 )
allav = np.cumsum(y) / N
= [ y0, (y0 + y1) / 2, (y0 + y1 + y2) / 3 ...]
An identity:
spread(y) = sum(y^2) - n * (av y)^2
Voila: the code below, all spreads() in time O(n).
Exercise: extend this to spreads around least-squares lines
fit to [ y0, [y0 y1], [y0 y1 y2] ... ], not just horizontal lines.
"""
from __future__ import division
import sys
import numpy as np
#...............................................................................
def spreads( y ):
""" [ spread y[:1], spread y[:2] ... spread y ] in time O(n)
where spread( y[] ) = sum (y - average y )^2
= n * variance(y)
"""
N = np.arange( 1, len(y)+1 )
return np.cumsum( y**2 ) - np.cumsum( y )**2 / N
def spreads_allij( y ):
""" -> A[i,j] = sum (y - av y)^2, spread of y around its average
for all y[i:j+1]
time, space O(n^2)
"""
y = np.asanyarray( y, dtype=float )
n = len(y)
A = np.zeros((n,n))
for i in range(n):
A[i,i:] = spreads( y[i:] )
return A
到目前为止,我们有一个n×n成本矩阵,空间O(n ^ 2)。
要下到空间O(n k),
仔细研究dyn-prog代码中Cost[i,j]
次访问的模式:
for nleft .. to n:
Cost_nleft = Cost[j,nleft ] -- time nleft or nleft^2
for k in 3 4 5 ...:
min [ C[k-1, j-1] + Cost_nleft[j] for j .. to nleft ]
这里Cost_nleft
是完整的n×n成本矩阵的一行,〜n个段,根据需要生成。
这可以在线段的时间O(n)中完成。
但是如果“通过一组n个点的一个段的错误需要O(n)时间”,
似乎我们的时间是O(n ^ 3)。评论任何人?
答案 1 :(得分:-1)
如果您可以为n^2
中的某个细分做最少的方格,那么使用动态编程可以轻松地在n^2 k^2
中执行您想要的操作。您可能只能将其优化为单个k
。