我是使用DataFrame的新手,我想知道如何在一系列表的多个列上执行左外连接的SQL等价
示例:
df1:
Year Week Colour Val1
2014 A Red 50
2014 B Red 60
2014 B Black 70
2014 C Red 10
2014 D Green 20
df2:
Year Week Colour Val2
2014 A Black 30
2014 B Black 100
2014 C Green 50
2014 C Red 20
2014 D Red 40
df3:
Year Week Colour Val3
2013 B Red 60
2013 C Black 80
2013 B Black 10
2013 D Green 20
2013 D Red 50
基本上我想做类似这样的SQL代码(请注意df3未在Year上加入):
SELECT df1.*, df2.Val2, df3.Val3
FROM df1
LEFT OUTER JOIN df2
ON df1.Year = df2.Year
AND df1.Week = df2.Week
AND df1.Colour = df2.Colour
LEFT OUTER JOIN df3
ON df1.Week = df3.Week
AND df1.Colour = df3.Colour
结果如下:
Year Week Colour Val1 Val2 Val3
2014 A Red 50 Null Null
2014 B Red 60 Null 60
2014 B Black 70 100 Null
2014 C Red 10 20 Null
2014 D Green 20 Null Null
我尝试过使用合并和连接,但无法弄清楚如何在多个表上进行操作以及何时涉及多个关节。有人可以帮我吗?
由于
答案 0 :(得分:76)
首先将它们合并为df1
和df2
两个步骤,然后将结果合并到df3
。
In [33]: s1 = pd.merge(df1, df2, how='left', on=['Year', 'Week', 'Colour'])
我从df3开始,因为你最后一次加入时不需要它。
In [39]: df = pd.merge(s1, df3[['Week', 'Colour', 'Val3']],
how='left', on=['Week', 'Colour'])
In [40]: df
Out[40]:
Year Week Colour Val1 Val2 Val3
0 2014 A Red 50 NaN NaN
1 2014 B Red 60 NaN 60
2 2014 B Black 70 100 10
3 2014 C Red 10 20 NaN
4 2014 D Green 20 NaN 20
[5 rows x 6 columns]
答案 1 :(得分:7)
也可以使用@ TomAugspurger的答案的紧凑版本来做到这一点,如下所示:
df = df1.merge(df2, how='left', on=['Year', 'Week', 'Colour']).merge(df3[['Week', 'Colour', 'Val3']], how='left', on=['Week', 'Colour'])