我的文件格式如下:
S1A23
0.01,0.01
0.02,0.02
0.03,0.03
S25A123
0.05,0.06
0.07,0.08
S3034A1
1000,0.04
2000,0.08
3000,0.1
我想通过每个“S_ A _”分解它,并计算下面数据的相关系数。到目前为止,我有:
import re
import pandas as pd
test = pd.read_csv("predict.csv",sep=('S\d+A\d+'))
print test
但这只能给我:
Unnamed: 0 ,
0 0.01,0.01 None
1 0.02,0.02 None
2 0.03,0.03 None
3 NaN ,
4 0.05,0.06 None
5 0.07,0.08 None
6 NaN ,
7 1000,0.04 None
8 2000,0.08 None
9 3000,0.1 None
[10 rows x 2 columns]
理想情况下,我希望保留正则表达式分隔符,并且有类似的内容:
S1A23: 1.0
S2A123: 0.86
S303A1: 0.75
这可能吗?
修改
运行大文件(~250k行)时,收到以下错误。这不是数据的问题,因为当我将~250k行分成更小的块时,所有部分都运行良好。
Traceback (most recent call last):
File "/Users/adamg/PycharmProjects/Subj_AnswerCorrCoef/GetCorrCoef.py", line 15, in <module>
print(result)
File "/Users/adamg/anaconda/lib/python2.7/site-packages/pandas/core/base.py", line 35, in __str__
return self.__bytes__()
File "/Users/adamg/anaconda/lib/python2.7/site-packages/pandas/core/base.py", line 47, in __bytes__
return self.__unicode__().encode(encoding, 'replace')
File "/Users/adamg/anaconda/lib/python2.7/site-packages/pandas/core/series.py", line 857, in __unicode__
result = self._tidy_repr(min(30, max_rows - 4))
TypeError: unsupported operand type(s) for -: 'NoneType' and 'int'
我的确切代码是:
import numpy as np
import pandas as pd
import csv
pd.options.display.max_rows = None
fileName = 'keyStrokeFourgram/TESTING1'
df = pd.read_csv(fileName, names=['pause', 'probability'])
mask = df['pause'].str.match('^S\d+_A\d+')
df['S/A'] = (df['pause']
.where(mask, np.nan)
.fillna(method='ffill'))
df = df.loc[~mask]
result = df.groupby(['S/A']).apply(lambda grp: grp['pause'].corr(grp['probability']))
print(result)
答案 0 :(得分:2)
sep
参数用于指定分隔同一行上的值的模式。它不能用于将csv的行分隔为单独的数据帧。
编辑:有一种方法可以使用read_csv
将csv读入数据框架。从read_csv
should be faster开始,这比使用Python循环(在我的原始答案中所做的)更可取。这可能很重要 - 特别是对于大型csv文件。
import numpy as np
import pandas as pd
df = pd.read_csv("data", names=['x', 'y'])
mask = df['x'].str.match('^S\d+A\d+') # 1
df['type'] = (df['x']
.where(mask, np.nan) # 2
.fillna(method='ffill')) # 3
df = df.loc[~mask] # 4
result = df.groupby(['type']).apply(lambda grp: grp['x'].corr(grp['y']))
print(result)
产量
type
S1A23 1.000000
S25A123 1.000000
S3034A1 0.981981
dtype: float64
'x'
列中包含“type”的行的掩码为True。
In [139]: mask
Out[139]:
0 True
1 False
2 False
3 False
4 True
5 False
6 False
7 True
8 False
9 False
10 False
Name: x, dtype: bool
df['x'].where(mask, np.nan)
返回一个系列,等于df['x']
其中
掩码为True,否则为np.nan。使用货币值
向前填充nansIn [141]: df['x'].where(mask, np.nan).fillna(method='ffill')
Out[141]:
0 S1A23
1 S1A23
2 S1A23
3 S1A23
4 S25A123
5 S25A123
6 S25A123
7 S3034A1
8 S3034A1
9 S3034A1
10 S3034A1
Name: x, dtype: object
原始答案:
不幸的是,我没有看到将数据文件直接读入相应DataFrame的方法。您需要使用Python循环对行进行一些按摩以使其成为正确的形式。
import pandas as pd
import csv
def to_columns(f):
val = None
for row in csv.reader(f):
if len(row) == 1:
val = row[0]
else:
yield [val] + row
with open('data') as f:
df = pd.DataFrame.from_records(to_columns(f), columns=['type', 'x', 'y'])
print(df)
result = df.groupby(['type']).apply(lambda grp: grp['x'].corr(grp['y']))
print(result)