我不确定使用哪个函数来执行以下操作:
library(data.table)
dt = data.table(a = 1:4, b = 1:2)
dt[, rep(a[1], 3), by = b]
# b V1
#1: 1 1
#2: 1 1
#3: 1 1
#4: 2 2
#5: 2 2
#6: 2 2
summarise
和mutate
都不满意此长度:
library(dplyr)
df = data.frame(a = 1:4, b = 1:2)
df %.% group_by(b) %.% summarise(rep(a[1], 3))
#Error: expecting a single value
df %.% group_by(b) %.% mutate(rep(a[1], 3))
#Error: incompatible size (3), expecting 2 (the group size) or 1
答案 0 :(得分:13)
在dplyr
版本0.2中,您可以使用do
运算符执行此操作:
> df %>% group_by(b) %>% do(data.frame(a = rep(.$a[1], 3)))
#Source: local data frame [6 x 2]
#Groups: b
#
# b a
#1 1 1
#2 1 1
#3 1 1
#4 2 2
#5 2 2
#6 2 2
答案 1 :(得分:7)
虽然@ beginneR的答案确实有效,但它似乎并不是data.table
行为的真正替代品。考虑:
df <- data.frame(a = 1, b = rep(1:1e4, 2))
dt <- data.table(df)
microbenchmark(times=5,
dt[, rep(a[1], 3), by = b],
df %>% group_by(b) %>% do(data.frame(a = rep(.$a[1], 3)))
)
dplyr
实施&gt;慢200倍。
Unit: milliseconds
expr min lq median uq
dt[, rep(a[1], 3), by = b] 13.14318 13.70248 14.60524 15.26676
df %>% group_by(b) %>% do(data.frame(a = rep(.$a[1], 3))) 3269.40731 3359.11614 3583.19430 3736.67162
也许有更好的方法可以使用do
执行此操作,而不需要每个data.frame
调用do
?此外,语法有点涉及data.table
中非常简单的内容。
否则,根据 Hadley's issue link ,似乎预计会在3.1中的dplyr
中实现,这看起来是下一个版本。