我想从摘要中只返回df(自由度)。我通过互联网搜索但是我没有找到任何东西。
y=c(2,13,0.4,5,8,10,13)
y1=c(2,13,0.004,5,8,1,13)
y2=c(2,3,0.004,15,8,10,1)
y3=c(2,2,2,2,2,2,NA)
fit=lm(y~y1+y2+y3)
summary(fit)
Call:
lm(formula = y ~ y1 + y2 + y3)
Residuals:
1 2 3 4 5 6
-1.5573 1.6523 -1.3718 -3.2909 -0.9247 5.4924
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.7682 3.0784 0.574 0.606
y1 0.6896 0.3649 1.890 0.155
y2 0.2050 0.3184 0.644 0.566
y3 NA NA NA NA
Residual standard error: 4.037 on 3 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.58, Adjusted R-squared: 0.3
F-statistic: 2.071 on 2 and 3 DF, p-value: 0.2722
是否有任何只返回df的函数 示例
df(fit) or fit$df
3
答案 0 :(得分:6)
在评论中,OP提到他们正在使用lm.fit()
而不是lm()
因此,演示如何执行此操作的示例代码是完全不同的; lm.fit()
需要向量响应和用户提供的正确模型矩阵,lm()
为您完成所有这些操作。因此NA
中存在x3
是我们需要考虑的问题,无论如何,df.residual()
也适用于该示例:
Xy <- cbind(y = c(2,13,0.4,5,8,10,13),
x0 = rep(1, 7),
x1 = c(2,13,0.004,5,8,1,13),
x2 = c(2,3,0.004,15,8,10,1),
x3 = c(2,2,2,2,2,2,NA))
Xy <- Xy[complete.cases(Xy), ]
X <- Xy[, -1]
y <- Xy[, 1]
fit <- lm.fit(X, y)
R> df.residual(fit)
[1] 3
检查拟合物体fit
Xy <- data.frame(y = c(2,13,0.4,5,8,10,13),
x1 = c(2,13,0.004,5,8,1,13),
x2 = c(2,3,0.004,15,8,10,1),
x3 = c(2,2,2,2,2,2,NA))
fit <- lm(y ~ x1 + x2 + x3, data = Xy)
str(fit, max = 1)
R> str(fit, max = 1)
List of 13
$ coefficients : Named num [1:4] 1.768 0.69 0.205 NA
..- attr(*, "names")= chr [1:4] "(Intercept)" "x1" "x2" "x3"
$ residuals : Named num [1:6] -1.557 1.652 -1.372 -3.291 -0.925 ...
..- attr(*, "names")= chr [1:6] "1" "2" "3" "4" ...
$ effects : Named num [1:6] -15.68 -7.79 2.6 -3.22 -0.98 ...
..- attr(*, "names")= chr [1:6] "(Intercept)" "x1" "x2" "" ...
$ rank : int 3
$ fitted.values: Named num [1:6] 3.56 11.35 1.77 8.29 8.92 ...
..- attr(*, "names")= chr [1:6] "1" "2" "3" "4" ...
$ assign : int [1:4] 0 1 2 3
$ qr :List of 5
..- attr(*, "class")= chr "qr"
$ df.residual : int 3
$ na.action :Class 'omit' Named int 7
.. ..- attr(*, "names")= chr "7"
$ xlevels : Named list()
$ call : language lm(formula = y ~ x1 + x2 + x3, data = Xy)
$ terms :Classes 'terms', 'formula' length 3 y ~ x1 + x2 + x3
.... <removed>
$ model :'data.frame': 6 obs. of 4 variables:
.... <removed>
- attr(*, "class")= chr "lm"
你会注意到df.residual
组件。您可以提取的内容与列表中的任何其他对象一样
R> fit$df.residual
[1] 3
但是那会错过提取器函数df.residual()
,它会为你完成所有这些
R> df.residual(fit)
[1] 3
关于这一点的好处是,如果函数作者关心,他们可以在他们的包中包含df.residual()
的方法,这样它也适用于他们的类模型,而你只需要记住一个函数名称...
答案 1 :(得分:3)
这正是您在问题中建议的
y=runif(20)
x=runif(20)
lm(y~x)$df
> lm(y~x)$df
[1] 18