问题已从原始编辑。
在阅读了这篇有趣的discussion后,我想知道如何使用dplyr替换列中的NAs,例如Lahman击球数据:
Source: local data frame [96,600 x 3]
Groups: teamID
yearID teamID G_batting
1 2004 SFN 11
2 2006 CHN 43
3 2007 CHA 2
4 2008 BOS 5
5 2009 SEA 3
6 2010 SEA 4
7 2012 NYA NA
以下不按预期工作
library(dplyr)
library(Lahman)
df <- Batting[ c("yearID", "teamID", "G_batting") ]
df <- group_by(df, teamID )
df$G_batting[is.na(df$G_batting)] <- mean(df$G_batting, na.rm = TRUE)
来源:本地数据框[20 x 3] 组:yearID,teamID
yearID teamID G_batting
1 2004 SFN 11.00000
2 2006 CHN 43.00000
3 2007 CHA 2.00000
4 2008 BOS 5.00000
5 2009 SEA 3.00000
6 2010 SEA 4.00000
7 2012 NYA **49.07894**
> mean(Batting$G_battin, na.rm = TRUE)
[1] **49.07894**
事实上,它归咎于整体均值而不是群体均值。你会如何在dplyr链中做到这一点?使用基础R中的transform
也可以不工作,因为它估算的是整体均值而不是群体均值。此方法也将数据转换为常规数据。一个框架。有更好的方法吗?
df %.%
group_by( yearID ) %.%
transform(G_batting = ifelse(is.na(G_batting),
mean(G_batting, na.rm = TRUE),
G_batting)
)
修改:用transform
替换mutate
会出现以下错误
Error in mutate_impl(.data, named_dots(...), environment()) :
INTEGER() can only be applied to a 'integer', not a 'double'
编辑:添加as.integer似乎可以解决错误,可以生成预期结果。另见@ eddi的回答。
df %.%
group_by( teamID ) %.%
mutate(G_batting = ifelse(is.na(G_batting), as.integer(mean(G_batting, na.rm = TRUE)), G_batting))
Source: local data frame [96,600 x 3]
Groups: teamID
yearID teamID G_batting
1 2004 SFN 11
2 2006 CHN 43
3 2007 CHA 2
4 2008 BOS 5
5 2009 SEA 3
6 2010 SEA 4
7 2012 NYA 47
> mean_NYA <- mean(filter(df, teamID == "NYA")$G_batting, na.rm = TRUE)
> as.integer(mean_NYA)
[1] 47
编辑:关注@ Romain的评论我从github安装了dplyr:
> head(df,10)
yearID teamID G_batting
1 2004 SFN 11
2 2006 CHN 43
3 2007 CHA 2
4 2008 BOS 5
5 2009 SEA 3
6 2010 SEA 4
7 2012 NYA NA
8 1954 ML1 122
9 1955 ML1 153
10 1956 ML1 153
> df %.%
+ group_by(teamID) %.%
+ mutate(G_batting = ifelse(is.na(G_batting), mean(G_batting, na.rm = TRUE), G_batting))
Source: local data frame [96,600 x 3]
Groups: teamID
yearID teamID G_batting
1 2004 SFN 0
2 2006 CHN 0
3 2007 CHA 0
4 2008 BOS 0
5 2009 SEA 0
6 2010 SEA 1074266112
7 2012 NYA 90693125
8 1954 ML1 122
9 1955 ML1 153
10 1956 ML1 153
.. ... ... ...
所以我没有得到错误(好),但我得到了一个(看似)奇怪的结果。
答案 0 :(得分:32)
您遇到的主要问题是mean
返回一个double,而G_batting
列是一个整数。因此,在as.integer
中包含均值可能会有效,或者您需要将整个列转换为numeric
我猜。
那就是说,这里有几个data.table
替代品 - 我没有检查哪一个更快。
library(data.table)
# using ifelse
dt = data.table(a = 1:2, b = c(1,2,NA,NA,3,4,5,6,7,8))
dt[, b := ifelse(is.na(b), mean(b, na.rm = T), b), by = a]
# using a temporary column
dt = data.table(a = 1:2, b = c(1,2,NA,NA,3,4,5,6,7,8))
dt[, b.mean := mean(b, na.rm = T), by = a][is.na(b), b := b.mean][, b.mean := NULL]
这就是我理想的做法(there is an FR关于此事):
# again, atm this is pure fantasy and will not work
dt[, b[is.na(b)] := mean(b, na.rm = T), by = a]
dplyr
的{{1}}版本(如在OP中):
ifelse
我不确定如何在dt %>% group_by(a) %>% mutate(b = ifelse(is.na(b), mean(b, na.rm = T), b))
中的单行中实现第二个data.table
想法。我也不确定如何阻止dplyr
加扰/排序数据(除了创建索引列之外)。