我使用以下代码来多线程urlib2。但是,限制它消耗的线程数的最佳方法是什么?
class ApiMultiThreadHelper:
def __init__(self,api_calls):
self.q = Queue.Queue()
self.api_datastore = {}
self.api_calls = api_calls
self.userpass = '#####'
def query_api(self,q,api_query):
self.q.put(self.issue_request(api_query))
def issue_request(self,api_query):
self.api_datastore.update({api_query:{}})
for lookup in ["call1","call2"]:
query = api_query+lookup
request = urllib2.Request(query)
request.add_header("Authorization", "Basic %s" % self.userpass)
f = urllib2.urlopen(request)
response = f.read()
f.close()
self.api_datastore[api_query].update({lookup:response})
return True
def go(self):
threads = []
for i in self.api_calls:
t = threading.Thread(target=self.query_api, args = (self.q,i))
t.start()
threads.append(t)
for t in threads:
t.join()
答案 0 :(得分:1)
您应该使用线程池。这是我多年前制作的实现(Python 3.x友好):
import traceback
from threading import Thread
try:
import queue as Queue # Python3.x
except ImportError:
import Queue
class ThreadPool(object):
def __init__(self, no=10):
self.alive = True
self.tasks = Queue.Queue()
self.threads = []
for _ in range(no):
t = Thread(target=self.worker)
t.start()
self.threads.append(t)
def worker(self):
while self.alive:
try:
fn, args, kwargs = self.tasks.get(timeout=0.5)
except Queue.Empty:
continue
except ValueError:
self.tasks.task_done()
continue
try:
fn(*args, **kwargs)
except Exception:
# might wanna add some better error handling
traceback.print_exc()
self.tasks.task_done()
def add_job(self, fn, args=[], kwargs={}):
self.tasks.put((fn, args, kwargs))
def join(self):
self.tasks.join()
def deactivate(self):
self.alive = False
for t in self.threads:
t.join()
您还可以在multiprocessing.pool
模块中找到类似的类(不要问我为什么会这样)。然后,您可以像这样重构代码:
def go(self):
tp = ThreadPool(20) # <-- 20 thread workers
for i in self.api_calls:
tp.add_job(self.query_api, args=(self.q, i))
tp.join()
tp.deactivate()
现在已经先验地定义了线程数。