我在dplyr-syntax中苦苦挣扎。我有一个包含不同变量和一个分组变量的数据框。现在,我想使用R中的dplyr计算每个组中每列的平均值。
df <- data.frame(
a = sample(1:5, n, replace = TRUE),
b = sample(1:5, n, replace = TRUE),
c = sample(1:5, n, replace = TRUE),
d = sample(1:5, n, replace = TRUE),
grp = sample(1:3, n, replace = TRUE)
)
df %>% group_by(grp) %>% summarise(mean(a))
这为我提供了#34; a&#34;由&#34; grp&#34;表示的每个组。
我的问题是:是否有可能同时获得每个组中每列的方法?或者我是否必须为每列重复df %>% group_by(grp) %>% summarise(mean(a))
?
我想要的是
df %>% group_by(grp) %>% summarise(mean(a:d)) # "mean(a:d)" does not work
答案 0 :(得分:231)
dplyr
包中包含summarise_all
用于此目的:
df %>% group_by(grp) %>% summarise_all(funs(mean))
#> Source: local data frame [3 x 5]
#>
#> grp a b c d
#> (int) (dbl) (dbl) (dbl) (dbl)
#> 1 1 3.000000 2.666667 2.666667 3.333333
#> 2 2 2.666667 2.666667 2.500000 2.833333
#> 3 3 4.000000 1.000000 4.000000 3.000000
如果您只想汇总某些列,请使用summarise_at
或summarise_if
函数。
或者,purrrlyr
包提供相同的功能:
df %>% slice_rows("grp") %>% dmap(mean)
#> Source: local data frame [3 x 5]
#>
#> grp a b c d
#> (int) (dbl) (dbl) (dbl) (dbl)
#> 1 1 3.000000 2.666667 2.666667 3.333333
#> 2 2 2.666667 2.666667 2.500000 2.833333
#> 3 3 4.000000 1.000000 4.000000 3.000000
另外,不要忘记data.table
:
setDT(df)[, lapply(.SD, mean), by = grp]
#> grp a b c d
#> 1: 3 3.714286 3.714286 2.428571 2.428571
#> 2: 1 1.000000 4.000000 5.000000 2.000000
#> 3: 2 4.000000 4.500000 3.000000 3.000000
让我们尝试比较一下表现。
library(dplyr)
library(purrrlyr)
library(data.table)
library(benchr)
n <- 10000
df <- data.frame(
a = sample(1:5, n, replace = TRUE),
b = sample(1:5, n, replace = TRUE),
c = sample(1:5, n, replace = TRUE),
d = sample(1:5, n, replace = TRUE),
grp = sample(1:3, n, replace = TRUE)
)
dt <- setDT(df)
benchmark(
dplyr = df %>% group_by(grp) %>% summarise_all(funs(mean)),
purrrlyr = df %>% slice_rows("grp") %>% dmap(mean),
data.table = dt[, lapply(.SD, mean), by = grp]
)
#> Benchmark summary:
#> Time units : microseconds
#> expr n.eval min lw.qu median mean up.qu max total relative
#> dplyr 100 3490 3550 3710 3890 3780 15100 389000 6.98
#> purrrlyr 100 2540 2590 2680 2920 2860 12000 292000 5.04
#> data.table 100 459 500 531 563 571 1380 56300 1.00
答案 1 :(得分:48)
我们可以在summarize_at
上使用summarize_all
,summarize_if
和dplyr 0.7.4
进行总结。我们可以使用vars
和funs
参数设置多个列和函数,如下面的代码所示。 funs公式的左侧被指定为汇总变量的后缀。在dplyr 0.7.4
中,summarise_each
(和mutate_each
)已弃用,因此我们无法使用这些功能。
options(scipen = 100, dplyr.width = Inf, dplyr.print_max = Inf)
library(dplyr)
packageVersion("dplyr")
# [1] ‘0.7.4’
set.seed(123)
df <- data_frame(
a = sample(1:5, 10, replace=T),
b = sample(1:5, 10, replace=T),
c = sample(1:5, 10, replace=T),
d = sample(1:5, 10, replace=T),
grp = as.character(sample(1:3, 10, replace=T)) # For convenience, specify character type
)
df %>% group_by(grp) %>%
summarise_each(.vars = letters[1:4],
.funs = c(mean="mean"))
# `summarise_each()` is deprecated.
# Use `summarise_all()`, `summarise_at()` or `summarise_if()` instead.
# To map `funs` over a selection of variables, use `summarise_at()`
# Error: Strings must match column names. Unknown columns: mean
您应该更改为以下代码。以下代码都具有相同的结果。
# summarise_at
df %>% group_by(grp) %>%
summarise_at(.vars = letters[1:4],
.funs = c(mean="mean"))
df %>% group_by(grp) %>%
summarise_at(.vars = names(.)[1:4],
.funs = c(mean="mean"))
df %>% group_by(grp) %>%
summarise_at(.vars = vars(a,b,c,d),
.funs = c(mean="mean"))
# summarise_all
df %>% group_by(grp) %>%
summarise_all(.funs = c(mean="mean"))
# summarise_if
df %>% group_by(grp) %>%
summarise_if(.predicate = function(x) is.numeric(x),
.funs = funs(mean="mean"))
# A tibble: 3 x 5
# grp a_mean b_mean c_mean d_mean
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 1 2.80 3.00 3.6 3.00
# 2 2 4.25 2.75 4.0 3.75
# 3 3 3.00 5.00 1.0 2.00
您还可以拥有多种功能。
df %>% group_by(grp) %>%
summarise_at(.vars = letters[1:2],
.funs = c(Mean="mean", Sd="sd"))
# A tibble: 3 x 5
# grp a_Mean b_Mean a_Sd b_Sd
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 1 2.80 3.00 1.4832397 1.870829
# 2 2 4.25 2.75 0.9574271 1.258306
# 3 3 3.00 5.00 NA NA
答案 2 :(得分:34)
您可以简单地将更多参数传递给summarise
:
df %>% group_by(grp) %>% summarise(mean(a), mean(b), mean(c), mean(d))
来源:本地数据框[3 x 5]
grp mean(a) mean(b) mean(c) mean(d)
1 1 2.500000 3.500000 2.000000 3.0
2 2 3.800000 3.200000 3.200000 2.8
3 3 3.666667 3.333333 2.333333 3.0
答案 3 :(得分:6)
为了完整性:使用带有ddply
的dplyr v0.2 colwise
也可以执行此操作:
> ddply(df, .(grp), colwise(mean))
grp a b c d
1 1 4.333333 4.00 1.000000 2.000000
2 2 2.000000 2.75 2.750000 2.750000
3 3 3.000000 4.00 4.333333 3.666667
但速度较慢,至少在这种情况下:
> microbenchmark(ddply(df, .(grp), colwise(mean)),
df %>% group_by(grp) %>% summarise_each(funs(mean)))
Unit: milliseconds
expr min lq mean
ddply(df, .(grp), colwise(mean)) 3.278002 3.331744 3.533835
df %>% group_by(grp) %>% summarise_each(funs(mean)) 1.001789 1.031528 1.109337
median uq max neval
3.353633 3.378089 7.592209 100
1.121954 1.133428 2.292216 100
答案 4 :(得分:4)
所有的例子都很棒,但是我想再添加一个例子来展示如何在一个整洁的工作中使用#34;格式简化了事情。现在,数据框在&#34;宽&#34;格式意味着变量&#34; a&#34;通过&#34; d&#34;以列表示。为了得到一个整洁的&#34; (或长)格式,您可以使用gather()
包中的tidyr
来移动列中的变量&#34; a&#34;通过&#34; d&#34;成行。然后使用group_by()
和summarize()
函数来获取每个组的平均值。如果您想以宽格式显示数据,只需另外调用spread()
函数即可。
library(tidyverse)
# Create reproducible df
set.seed(101)
df <- tibble(a = sample(1:5, 10, replace=T),
b = sample(1:5, 10, replace=T),
c = sample(1:5, 10, replace=T),
d = sample(1:5, 10, replace=T),
grp = sample(1:3, 10, replace=T))
# Convert to tidy format using gather
df %>%
gather(key = variable, value = value, a:d) %>%
group_by(grp, variable) %>%
summarize(mean = mean(value)) %>%
spread(variable, mean)
#> Source: local data frame [3 x 5]
#> Groups: grp [3]
#>
#> grp a b c d
#> * <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.000000 3.5 3.250000 3.250000
#> 2 2 1.666667 4.0 4.666667 2.666667
#> 3 3 3.333333 3.0 2.333333 2.333333