我需要找到列表中元素的频率
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
输出 - >
b = [4,4,2,1,2]
此外,我想从
中删除重复项a = [1,2,3,4,5]
答案 0 :(得分:447)
在Python 2.7(或更新版本)中,您可以使用collections.Counter
:
import collections
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
counter=collections.Counter(a)
print(counter)
# Counter({1: 4, 2: 4, 3: 2, 5: 2, 4: 1})
print(counter.values())
# [4, 4, 2, 1, 2]
print(counter.keys())
# [1, 2, 3, 4, 5]
print(counter.most_common(3))
# [(1, 4), (2, 4), (3, 2)]
如果您使用的是Python 2.6或更早版本,则可以下载here。
答案 1 :(得分:116)
由于订购了清单,您可以这样做:
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
from itertools import groupby
[len(list(group)) for key, group in groupby(a)]
输出:
[4, 4, 2, 1, 2]
答案 2 :(得分:94)
Python 2.7+引入了词典理解。从列表中构建字典将为您提供计数以及删除重复项。
>>> a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
>>> d = {x:a.count(x) for x in a}
>>> d
{1: 4, 2: 4, 3: 2, 4: 1, 5: 2}
>>> a, b = d.keys(), d.values()
>>> a
[1, 2, 3, 4, 5]
>>> b
[4, 4, 2, 1, 2]
答案 3 :(得分:45)
计算出场次数:
from collections import defaultdict
appearances = defaultdict(int)
for curr in a:
appearances[curr] += 1
删除重复项:
a = set(a)
答案 4 :(得分:23)
计算元素的频率可能最好用字典来完成:
b = {}
for item in a:
b[item] = b.get(item, 0) + 1
要删除重复项,请使用set:
a = list(set(a))
答案 5 :(得分:20)
在Python 2.7+中,您可以使用collections.Counter来计算项目
>>> a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
>>>
>>> from collections import Counter
>>> c=Counter(a)
>>>
>>> c.values()
[4, 4, 2, 1, 2]
>>>
>>> c.keys()
[1, 2, 3, 4, 5]
答案 6 :(得分:9)
你可以这样做:
import numpy as np
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
np.unique(a, return_counts=True)
输出:
(array([1, 2, 3, 4, 5]), array([4, 4, 2, 1, 2], dtype=int64))
第一个数组是值,第二个数组是具有这些值的元素数。
所以如果你想获得数字的数组,你应该使用它:
np.unique(a, return_counts=True)[1]
答案 7 :(得分:7)
seta = set(a)
b = [a.count(el) for el in seta]
a = list(seta) #Only if you really want it.
答案 8 :(得分:6)
from collections import Counter
a=["E","D","C","G","B","A","B","F","D","D","C","A","G","A","C","B","F","C","B"]
counter=Counter(a)
kk=[list(counter.keys()),list(counter.values())]
pd.DataFrame(np.array(kk).T, columns=['Letter','Count'])
答案 9 :(得分:6)
这是使用itertools.groupby
的另一个简洁选择,它也适用于无序输入:
from itertools import groupby
items = [5, 1, 1, 2, 2, 1, 1, 2, 2, 3, 4, 3, 5]
results = {value: len(list(freq)) for value, freq in groupby(sorted(items))}
结果
{1: 4, 2: 4, 3: 2, 4: 1, 5: 2}
答案 10 :(得分:5)
我只是按照以下方式使用scipy.stats.itemfreq:
from scipy.stats import itemfreq
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
freq = itemfreq(a)
a = freq[:,0]
b = freq[:,1]
您可以在此处查看文档:{{3}}
答案 11 :(得分:4)
def frequencyDistribution(data):
return {i: data.count(i) for i in data}
print frequencyDistribution([1,2,3,4])
...
{1: 1, 2: 1, 3: 1, 4: 1} # originalNumber: count
答案 12 :(得分:3)
对于您的第一个问题,迭代列表并使用字典来跟踪元素存在。
关于第二个问题,只需使用set运算符。
答案 13 :(得分:3)
这个答案更明确
a = [1,1,1,1,2,2,2,2,3,3,3,4,4]
d = {}
for item in a:
if item in d:
d[item] = d.get(item)+1
else:
d[item] = 1
for k,v in d.items():
print(str(k)+':'+str(v))
# output
#1:4
#2:4
#3:3
#4:2
#remove dups
d = set(a)
print(d)
#{1, 2, 3, 4}
答案 14 :(得分:2)
要在列表中查找唯一元素:
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
a = list(set(a))
要使用字典查找排序数组中唯一元素的数量:
def CountFrequency(my_list):
# Creating an empty dictionary
freq = {}
for item in my_list:
if (item in freq):
freq[item] += 1
else:
freq[item] = 1
for key, value in freq.items():
print ("% d : % d"%(key, value))
# Driver function
if __name__ == "__main__":
my_list =[1, 1, 1, 5, 5, 3, 1, 3, 3, 1, 4, 4, 4, 2, 2, 2, 2]
CountFrequency(my_list)
参考:
答案 15 :(得分:2)
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
# 1. Get counts and store in another list
output = []
for i in set(a):
output.append(a.count(i))
print(output)
# 2. Remove duplicates using set constructor
a = list(set(a))
print(a)
输出
D:\MLrec\venv\Scripts\python.exe D:/MLrec/listgroup.py
[4, 4, 2, 1, 2]
[1, 2, 3, 4, 5]
答案 16 :(得分:2)
我来晚了,但这也可以工作,并且可以帮助其他人:
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
freq_list = []
a_l = list(set(a))
for x in a_l:
freq_list.append(a.count(x))
print 'Freq',freq_list
print 'number',a_l
会产生这个。
Freq [4, 4, 2, 1, 2]
number[1, 2, 3, 4, 5]
答案 17 :(得分:2)
数据。假设我们有一个列表:
fruits = ['banana', 'banana', 'apple', 'banana']
解决方案。然后,通过执行以下操作,我们可以找出列表中每个水果的数量:
import numpy as np
(unique, counts) = np.unique(fruits, return_counts=True)
{x:y for x,y in zip(unique, counts)}
输出:
{'banana': 3, 'apple': 1}
答案 18 :(得分:1)
from collections import OrderedDict
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
def get_count(lists):
dictionary = OrderedDict()
for val in lists:
dictionary.setdefault(val,[]).append(1)
return [sum(val) for val in dictionary.values()]
print(get_count(a))
>>>[4, 4, 2, 1, 2]
删除重复项并维护订单:
list(dict.fromkeys(get_count(a)))
>>>[4, 2, 1]
答案 19 :(得分:1)
我正在使用Counter来生成频率。来自1行代码中的文本文件单词的dict
def _fileIndex(fh):
''' create a dict using Counter of a
flat list of words (re.findall(re.compile(r"[a-zA-Z]+"), lines)) in (lines in file->for lines in fh)
'''
return Counter(
[wrd.lower() for wrdList in
[words for words in
[re.findall(re.compile(r'[a-zA-Z]+'), lines) for lines in fh]]
for wrd in wrdList])
答案 20 :(得分:0)
如果您不想使用任何库并保持简单和简短,可以尝试这种方法!
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
marked = []
b = [(a.count(i), marked.append(i))[0] for i in a if i not in marked]
print(b)
O / P
[4, 4, 2, 1, 2]
答案 21 :(得分:0)
您可以使用python
中提供的内置函数SQLiteDatabase.java
上面的代码会自动删除列表中的重复项,并且还会打印原始列表中每个元素的频率以及没有重复项的列表。
一杆两只鸟! X D
答案 22 :(得分:0)
num=[3,2,3,5,5,3,7,6,4,6,7,2]
print ('\nelements are:\t',num)
count_dict={}
for elements in num:
count_dict[elements]=num.count(elements)
print ('\nfrequency:\t',count_dict)
答案 23 :(得分:0)
记录下来,一个功能性答案:
>>> L = [1,1,1,1,2,2,2,2,3,3,4,5,5]
>>> import functools
>>> >>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc,1)] if e<=len(acc) else acc+[0 for _ in range(e-len(acc)-1)]+[1], L, [])
[4, 4, 2, 1, 2]
如果您也算零,那会更干净:
>>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc)] if e<len(acc) else acc+[0 for _ in range(e-len(acc))]+[1], L, [])
[0, 4, 4, 2, 1, 2]
说明:
acc
列表开始; e
的下一个元素L
小于acc
的大小,我们只更新此元素:v+(i==e)
表示v+1
,如果索引i
中的acc
是当前元素e
,否则是先前的值v
; e
的下一个元素L
大于或等于acc
的大小,我们必须扩展acc
来容纳新的1
。不必对元素进行排序(itertools.groupby
)。如果数字为负,则会得到奇怪的结果。
答案 24 :(得分:0)
使用字典的简单解决方案。
def frequency(l):
d = {}
for i in l:
if i in d.keys():
d[i] += 1
else:
d[i] = 1
for k, v in d.iteritems():
if v ==max (d.values()):
return k,d.keys()
print(frequency([10,10,10,10,20,20,20,20,40,40,50,50,30]))
答案 25 :(得分:0)
执行此操作的另一种方法,尽管使用了功能更强大的NLTK库。
import nltk
fdist = nltk.FreqDist(a)
fdist.values()
fdist.most_common()
答案 26 :(得分:0)
找到了另一种使用集合的方法。
#ar is the list of elements
#convert ar to set to get unique elements
sock_set = set(ar)
#create dictionary of frequency of socks
sock_dict = {}
for sock in sock_set:
sock_dict[sock] = ar.count(sock)
答案 27 :(得分:0)
使用另一种不使用集合的算法的另一种解决方案:
def countFreq(A):
n=len(A)
count=[0]*n # Create a new list initialized with '0'
for i in range(n):
count[A[i]]+= 1 # increase occurrence for value A[i]
return [x for x in count if x] # return non-zero count
答案 28 :(得分:0)
#!usr/bin/python
def frq(words):
freq = {}
for w in words:
if w in freq:
freq[w] = freq.get(w)+1
else:
freq[w] =1
return freq
fp = open("poem","r")
list = fp.read()
fp.close()
input = list.split()
print input
d = frq(input)
print "frequency of input\n: "
print d
fp1 = open("output.txt","w+")
for k,v in d.items():
fp1.write(str(k)+':'+str(v)+"\n")
fp1.close()
答案 29 :(得分:-1)
a=[1,2,3,4,5,1,2,3]
b=[0,0,0,0,0,0,0]
for i in range(0,len(a)):
b[a[i]]+=1
答案 30 :(得分:-1)
对于无序列表,应使用:
[a.count(el) for el in set(a)]
输出为
[4, 4, 2, 1, 2]
答案 31 :(得分:-2)
另一种方法是使用字典和list.count,以一种天真的方式来做它。
dicio = dict()
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
b = list()
c = list()
for i in a:
if i in dicio: continue
else:
dicio[i] = a.count(i)
b.append(a.count(i))
c.append(i)
print (b)
print (c)
答案 32 :(得分:-3)
str1='the cat sat on the hat hat'
list1=str1.split();
list2=str1.split();
count=0;
m=[];
for i in range(len(list1)):
t=list1.pop(0);
print t
for j in range(len(list2)):
if(t==list2[j]):
count=count+1;
print count
m.append(count)
print m
count=0;
#print m