数据表根据日期范围合并

时间:2014-02-04 18:30:46

标签: r data.table

我有两个表,policiesclaims

policies<-data.table(policyNumber=c(123,123,124,125), 
                EFDT=as.Date(c("2012-1-1","2013-1-1","2013-1-1","2013-2-1")), 
                EXDT=as.Date(c("2013-1-1","2014-1-1","2014-1-1","2014-2-1")))
> policies
   policyNumber       EFDT       EXDT
1:          123 2012-01-01 2013-01-01
2:          123 2013-01-01 2014-01-01
3:          124 2013-01-01 2014-01-01
4:          125 2013-02-01 2014-02-01


claims<-data.table(claimNumber=c(1,2,3,4), 
                   policyNumber=c(123,123,123,124),
                   lossDate=as.Date(c("2012-2-1","2012-8-15","2013-1-1","2013-10-31")),
                   claimAmount=c(10,20,20,15))
> claims
   claimNumber policyNumber   lossDate claimAmount
1:           1          123 2012-02-01          10
2:           2          123 2012-08-15          20
3:           3          123 2013-01-01          20
4:           4          124 2013-10-31          15

政策表确实包含政策条款,因为每一行都由政策编号和生效日期唯一标识。

我想以一种将声明与策略术语相关联的方式合并这两个表。如果索赔具有相同的策略编号且索赔的lossDate属于策略期限的生效日期和到期日期(有效日期为包含边界且到期日期为独占边界),则该索赔与策略术语相关联。我以这种方式合并表格?

这应该类似于左外连接。结果应该看起来像

   policyNumber       EFDT       EXDT claimNumber   lossDate claimAmount
1:          123 2012-01-01 2013-01-01           1 2012-02-01          10
2:          123 2012-01-01 2013-01-01           2 2012-08-15          20
3:          123 2013-01-01 2014-01-01           3 2013-01-01          20
4:          124 2013-01-01 2014-01-01           4 2013-10-31          15
5:          125 2013-02-01 2014-02-01          NA       <NA>          NA

2 个答案:

答案 0 :(得分:9)

版本1(针对data.table v1.9.4 +更新)

试试这个:

# Policies table; I've added policyNumber 126:
policies<-data.table(policyNumber=c(123,123,124,125,126), 
                     EFDT=as.Date(c("2012-01-01","2013-01-01","2013-01-01","2013-02-01","2013-02-01")), 
                     EXDT=as.Date(c("2013-01-01","2014-01-01","2014-01-01","2014-02-01","2014-02-01")))

# Claims table; I've added two claims for 126 that are before and after the policy dates:
claims<-data.table(claimNumber=c(1,2,3,4,5,6), 
                   policyNumber=c(123,123,123,124,126,126),
                   lossDate=as.Date(c("2012-2-1","2012-8-15","2013-1-1","2013-10-31","2012-06-01","2014-03-01")),
                   claimAmount=c(10,20,20,15,5,25))

# Set the keys for policies and claims so we can join them:
setkey(policies,policyNumber,EFDT)
setkey(claims,policyNumber,lossDate)

# Join the tables using roll
# ans<-policies[claims,list(EFDT,EXDT,claimNumber,lossDate,claimAmount,inPolicy=F),roll=T][,EFDT:=NULL] ## This worked with earlier versions of data.table, but broke when they updated the by-without-by behavior...
ans<-policies[claims,list(.EFDT=EFDT,EXDT,claimNumber,lossDate,claimAmount,inPolicy=F),by=.EACHI,roll=T][,`:=`(EFDT=.EFDT, .EFDT=NULL)]

# The claim should have inPolicy==T where lossDate is between EFDT and EXDT:
ans[lossDate>=EFDT & lossDate<=EXDT, inPolicy:=T]

# Set the keys again, but this time we'll join on both dates:
setkey(ans,policyNumber,EFDT,EXDT)
setkey(policies,policyNumber,EFDT,EXDT)

# Union the ans table with policies that don't have any claims:
ans<-rbindlist(list(ans, ans[policies][is.na(claimNumber)]))

ans
#   policyNumber       EFDT       EXDT claimNumber   lossDate claimAmount inPolicy
#1:          123 2012-01-01 2013-01-01           1 2012-02-01          10     TRUE
#2:          123 2012-01-01 2013-01-01           2 2012-08-15          20     TRUE
#3:          123 2013-01-01 2014-01-01           3 2013-01-01          20     TRUE
#4:          124 2013-01-01 2014-01-01           4 2013-10-31          15     TRUE
#5:          126       <NA>       <NA>           5 2012-06-01           5    FALSE
#6:          126 2013-02-01 2014-02-01           6 2014-03-01          25    FALSE
#7:          125 2013-02-01 2014-02-01          NA       <NA>          NA       NA

版本2

@Arun建议使用foverlaps中的新data.table功能。我下面的尝试似乎更难,也不容易,所以请让我知道如何改进它。

## The foverlaps function requires both tables to have a start and end range, and the "y" table to be keyed
claims[, lossDate2:=lossDate]  ## Add a redundant lossDate column to use as the end range for claims
setkey(policies, policyNumber, EFDT, EXDT) ## Set the key for policies ("y" table)

## Find the overlaps, remove the redundant lossDate2 column, and add the inPolicy column:
ans2 <- foverlaps(claims, policies, by.x=c("policyNumber", "lossDate", "lossDate2"))[, `:=`(inPolicy=T, lossDate2=NULL)]

## Update rows where the claim was out of policy:
ans2[is.na(EFDT), inPolicy:=F]

## Remove duplicates (such as policyNumber==123 & claimNumber==3),
##   and add policies with no claims (policyNumber==125):
setkey(ans2, policyNumber, claimNumber, lossDate, EFDT) ## order the results
setkey(ans2, policyNumber, claimNumber) ## set the key to identify unique values
ans2 <- rbindlist(list(
  unique(ans2), ## select only the unique values
  policies[!.(ans2[, unique(policyNumber)])] ## policies with no claims
), fill=T)

ans2
##    policyNumber       EFDT       EXDT claimNumber   lossDate claimAmount inPolicy
## 1:          123 2012-01-01 2013-01-01           1 2012-02-01          10     TRUE
## 2:          123 2012-01-01 2013-01-01           2 2012-08-15          20     TRUE
## 3:          123 2012-01-01 2013-01-01           3 2013-01-01          20     TRUE
## 4:          124 2013-01-01 2014-01-01           4 2013-10-31          15     TRUE
## 5:          126       <NA>       <NA>           5 2012-06-01           5    FALSE
## 6:          126       <NA>       <NA>           6 2014-03-01          25    FALSE
## 7:          125 2013-02-01 2014-02-01          NA       <NA>          NA       NA

版本3

使用foverlaps(),另一个版本:

require(data.table) ## 1.9.4+
setDT(claims)[, lossDate2 := lossDate]
setDT(policies)[, EXDTclosed := EXDT-1L]
setkey(claims, policyNumber, lossDate, lossDate2)
foverlaps(policies, claims, by.x=c("policyNumber", "EFDT", "EXDTclosed"))

foverlaps()需要开始结束范围/间隔。因此,我们将lossDate列重复到lossDate2

由于EXDT需要打开间隔,我们会从中减去一个,并将其放在新列EXDTclosed中。

现在,我们设置密钥。 foverlaps()要求最后两个键列为间隔。所以他们最后指定。我们还希望通过policyNumber重叠加入第一次匹配。因此,它也在密钥中指定。

我们需要在claims上设置密钥(检查?foverlaps)。我们不必在policies上设置密钥。但是如果你愿意,你可以(然后你可以跳过by.x参数,因为它默认采用键值)。由于我们未在此处设置policies的密钥,因此我们将明确指定by.x参数中的相应列。默认情况下,重叠类型为any,我们不必更改(因此未指定)。这导致:

#    policyNumber claimNumber   lossDate claimAmount  lossDate2       EFDT       EXDT EXDTclosed
# 1:          123           1 2012-02-01          10 2012-02-01 2012-01-01 2013-01-01 2012-12-31
# 2:          123           2 2012-08-15          20 2012-08-15 2012-01-01 2013-01-01 2012-12-31
# 3:          123           3 2013-01-01          20 2013-01-01 2013-01-01 2014-01-01 2013-12-31
# 4:          124           4 2013-10-31          15 2013-10-31 2013-01-01 2014-01-01 2013-12-31
# 5:          125          NA       <NA>          NA       <NA> 2013-02-01 2014-02-01 2014-01-31

答案 1 :(得分:1)

我认为这主要是你想要的。我需要运行,所以没有时间添加没有声明的策略并清理列,但我认为难以解决的问题:

setkey(policies, policyNumber, EXDT)
policies[, EXDT2:=EXDT]
policies[claims[, list( policyNumber, lossDate, lossDate, claimNumber, claimAmount)], roll=-Inf]
#    policyNumber       EXDT       EFDT      EXDT2   lossDate claimNumber claimAmount
# 1:          123 2012-02-01 2012-01-01 2013-01-01 2012-02-01           1          10
# 2:          123 2012-08-15 2012-01-01 2013-01-01 2012-08-15           2          20
# 3:          123 2013-01-01 2012-01-01 2013-01-01 2013-01-01           3          20
# 4:          124 2013-10-31 2013-01-01 2014-01-01 2013-10-31           4          15

另请注意,从此结果中删除/突出显示保单日期之外的声明是微不足道的。