我可以想象以下代码:
template <typename T> class X
{
public:
T container;
void foo()
{
if(is_vector(T))
container.push_back(Z);
else
container.insert(Z);
}
}
// somewhere else...
X<std::vector<sth>> abc;
abc.foo();
如何编写,成功编译?我知道类型特征,但是当我定义时:
template<typename T> struct is_vector : public std::false_type {};
template<typename T, typename A>
struct is_vector<std::vector<T, A>> : public std::true_type {};
它无法编译:
error: no matching function for call to 'std::vector<sth>::insert(Z)'
static_assert也不是我想要的。有什么建议吗?
以下是我想要实现的一个简短示例(SSC C E):http://ideone.com/D3vBph
答案 0 :(得分:28)
命名为tag dispatching:
#include <vector>
#include <set>
#include <type_traits>
template<typename T> struct is_vector : public std::false_type {};
template<typename T, typename A>
struct is_vector<std::vector<T, A>> : public std::true_type {};
template <typename T>
class X {
T container;
void foo( std::true_type ) {
container.push_back(0);
}
void foo( std::false_type ) {
container.insert(0);
}
public:
void foo() {
foo( is_vector<T>{} );
}
};
// somewhere else...
int main() {
X<std::vector<int>> abc;
abc.foo();
X<std::set<int>> def;
def.foo();
}
答案 1 :(得分:6)
另一个值得考虑的方法是使用SFINAE检测push_back函数的存在。这稍微更通用,因为它将转换为实现push_back的其他容器。
template<typename T>
struct has_push_back
{
template<typename U>
static std::true_type test(
decltype((void(U::*)(const typename U::value_type&)) &U::push_back)*);
template<typename>
static std::false_type test(...);
typedef decltype(test<T>(0)) type;
static constexpr bool value =
std::is_same<type, std::true_type>::value;
};
请注意,它目前仅检测push_back(const T&)
而非push_back(T&&)
。检测两者有点复杂。
以下是如何使用它来实际插入。
template<typename C, typename T>
void push_back_impl(C& cont, const T& value, std::true_type) {
cont.push_back(value);
}
template<typename C, typename T>
void push_back_impl(C& cont, const T& value, std::false_type) {
cont.insert(value);
}
template<typename C, typename T>
void push_back(C& cont, const T& value) {
push_back_impl(cont, value, has_push_back<C>::type());
}
std::vector<int> v;
push_back(v, 1);
std::set<int> s;
push_back(s, 1);
老实说,这个解决方案比我原先预期的要复杂得多,所以除非你真的需要,否则我不会使用它。虽然支持const T&
和T&&
并不是很难,但是你需要维护更加神秘的代码,这在大多数情况下可能都不值得。
答案 2 :(得分:4)
仅使用插入:
#include <iostream>
#include <vector>
#include <set>
template <typename T>
class X
{
public:
T container;
template <typename U>
void insert(const U& u) {
container.insert(container.end(), u);
}
};
int main() {
X<std::vector<int>> v;
v.insert(2);
v.insert(1);
v.insert(0);
for(std::vector<int>::const_iterator pos = v.container.begin();
pos != v.container.end();
++pos)
{
std::cout << *pos;
}
std::cout << '\n';
X<std::set<int>> s;
s.insert(2);
s.insert(1);
s.insert(0);
for(std::set<int>::const_iterator pos = s.container.begin();
pos != s.container.end();
++pos)
{
std::cout << *pos;
}
std::cout << '\n';
}
答案 3 :(得分:1)
这是使用void_t的典型方法:
template <typename T>
using void_t = void; // C++17 std::void_t
template <typename C, typename = void> // I'm using C for "container" instead of T, but whatever.
struct has_push_back_impl : std::false_type {};
template <typename C>
struct has_push_back_impl<C, void_t<decltype(std::declval<C>().push_back(typename C::value_type{}))>>
: std::true_type {}; // Note that void_t is technically not needed in this case, since the 'push_back' member function actually returns void anyway, but it the general method to pass the type into void_t's template argument to obtain void. For example, the 'insert' function from std::set and std::map do NOT return void, so 'has_insert' will need to use void_t.
template <typename C>
using has_push_back = has_push_back_impl<C>; // void passed to the second template argument by default, thus allowing the second specialization to be used instead of the primary template whenever C has a push_back member function.
此方法适用于has_insert
关联容器,即使std::set
,std::map
&#39; s insert
函数返回std::pair<typename T::iterator, bool>
而std::multimap::insert
1}}返回std::multimap::iterator
(这是Ze Blob方法不起作用的一种情况)。
答案 4 :(得分:1)
如果使用constexpr if
,则表示操作正确。此C ++ 17代码编译:
#include <iostream>
#include <type_traits>
#include <vector>
#include <list>
template<typename T> struct is_vector : public std::false_type {};
template<typename T, typename A>
struct is_vector<std::vector<T, A>> : public std::true_type {};
template <typename T>
class X
{
public:
T container;
void foo()
{
if constexpr(is_vector<T>::value){
std::cout << "I am manipulating a vector" << std::endl;
// Can access container.push_back here without compilation error
}
else {
std::cout << "I am manipulating something else" << std::endl;
}
}
};
int main() {
X<std::vector<int>> abc;
abc.foo(); // outputs "I am manipulating a vector"
X<std::list<int>> def;
def.foo(); // outputs "I am manipulating something else"
}