更改pandas 0.13.0“print dataframe”以打印早期版本中的数据帧

时间:2014-01-31 14:33:38

标签: python pandas dataframe

在新版本的0.13.0大熊猫中,数据帧df使用

打印在一个长数字列表中
df

print df

而不是像以前一样的概述,现在只能使用

df.info()

是否可以更改默认' df'或者' print df'命令显示:

In [12]: df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 4319 entries, 2010-02-18 00:00:00 to 2010-03-13 23:15:00
Data columns (total 2 columns):
QInt    4319  non-null values
QHea    4319  non-null values
dtypes: float32(2)

再次代替:

In [11]: df
Out[11]:
                                  QInt         QHea
2010-02-18 00:00:00         169.666672     0.000000
2010-02-18 00:15:00         152.000000    -0.000000
2010-02-18 00:15:00         152.000000    -0.000000
2010-02-18 00:30:00         155.000000    -0.000000
2010-02-18 00:30:04         155.063950    -0.000000
2010-02-18 00:30:04         155.063950 -1136.823364
2010-02-18 00:45:00         169.666672  4587.430176
2010-02-18 01:00:00         137.333328  4532.890137
2010-02-18 01:00:00         137.333328  4532.890137
2010-02-18 01:15:00         177.000000  4464.479980
2010-02-18 01:15:00         177.000000  4464.479980
2010-02-18 01:30:00         169.666672  4391.839844
2010-02-18 01:30:00         169.666672  4391.839844
2010-02-18 01:45:00         155.000000  4313.049805
2010-02-18 01:45:00         155.000000  4313.049805
2010-02-18 02:00:00         144.666672  4230.100098
2010-02-18 02:15:00         162.333328  4144.819824
2010-02-18 02:15:00         162.333328  4144.819824
2010-02-18 02:30:00         177.000000  4059.689941
2010-02-18 02:45:00         144.666672  3987.149902
2010-02-18 02:45:00         144.666672  3987.149902
2010-02-18 03:00:00         155.000000  3924.629883
2010-02-18 03:00:00         155.000000  3924.629883
2010-02-18 03:15:00         162.333328  3865.129883
2010-02-18 03:15:00         162.333328  3865.129883
2010-02-18 03:30:00         162.333328  3811.050049
2010-02-18 03:30:00         162.333328  3811.050049
2010-02-18 03:45:00         152.000000  3765.590088
2010-02-18 03:45:00         152.000000  3765.590088
2010-02-18 04:00:00         162.333328  3735.080078
2010-02-18 04:15:00         162.333328  3703.169922
2010-02-18 04:15:00         162.333328  3703.169922
2010-02-18 04:30:00         144.666672  3673.139893
2010-02-18 04:45:00         169.666672  3647.100098
2010-02-18 04:45:00         169.666672  3647.100098
2010-02-18 05:00:00         162.333328  3622.129883
2010-02-18 05:15:00         155.000000  3594.159912
2010-02-18 05:15:00         155.000000  3594.159912
2010-02-18 05:30:00         159.333328  3569.699951
2010-02-18 05:30:00         159.333328  3569.699951
2010-02-18 05:45:00         147.666672  3551.179932
2010-02-18 05:45:00         147.666672  3551.179932
2010-02-18 06:00:00         177.000000  3531.669922
2010-02-18 06:00:00         177.000000  3531.669922
2010-02-18 06:15:00         159.333328  3514.679932
2010-02-18 06:15:00         159.333328  3514.679932
2010-02-18 06:30:00         155.000000  3499.669922
2010-02-18 06:30:00         155.000000  3499.669922
2010-02-18 06:45:00         155.000000  3485.320068
2010-02-18 06:45:00         155.000000  3485.320068
2010-02-18 06:59:54.750000  162.291245    19.999992
2010-02-18 06:59:54.750000  162.291245     0.000000
2010-02-18 07:00:00         162.333328     0.000000
2010-02-18 07:00:00         162.333328     0.000000
2010-02-18 07:15:00         166.666672     0.000000
2010-02-18 07:15:00         166.666672     0.000000
2010-02-18 07:30:00         155.000000     0.000000
2010-02-18 07:30:00         155.000000     0.000000
2010-02-18 07:45:00         155.000000     0.000000
2010-02-18 07:45:00         155.000000     0.000000
                                   ...          ...

[4319 rows x 2 columns]

1 个答案:

答案 0 :(得分:3)

pd.options.display.large_repr = 'info'

v.0.13的默认值是'truncate'。

In [93]: df = pd.DataFrame(np.arange(4319*2).reshape(4319,2))

In [94]: pd.options.display.large_repr = 'info'

In [95]: df
Out[95]: 
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4319 entries, 0 to 4318
Data columns (total 2 columns):
0    4319 non-null int32
1    4319 non-null int32
dtypes: int32(2)

我通过在输出中搜索字符串'info()'来找到它:

In [65]: pd.set_option?

要使其成为互动会话的默认行为:

如果您尚未设置,请将环境变量PYTHONSTARTUP定义为类似/home/user/bin/startup.py

的内容

然后编辑/创建/home/user/bin/startup.py以包含类似

的内容
import pandas as pd
pd.options.display.large_repr = 'info'

现在,无论何时启动交互式Python会话,都会执行startup.py文件,您可以通过pd变量访问pandas,large_repr默认将{ {1}}。