我一直在使用小tab
函数,它显示了向量的频率,百分比和累积百分比。输出看起来像这样
Freq Percent cum
ARSON 462 0.01988893 0.01988893
BURGLARY 22767 0.98011107 1.00000000
23229 1.00000000 NA
优秀的dplyr
包促使我更新功能。现在我想知道如何更快地更新版本。这是旧功能
tab = function(x,useNA =FALSE) {
k=length(unique(x[!is.na(x)]))+1
if (useNA) k=k+1
tab=array(NA,c(k,3))
colnames(tab)=c("freq.","prob.","cum.")
useNA=ifelse(useNA,"always","no")
rownames(tab)=names(c(table(x,useNA=useNA),""))
tab[-nrow(tab),1]=table(x,useNA=useNA)
tab[-nrow(tab),2]=prop.table(table(x,useNA=useNA))
tab[,3] = cumsum(tab[,2])
if(k>2) tab[nrow(tab),-3]=colSums(tab[-nrow(tab),-3])
if(k==2) tab[nrow(tab),-3]=tab[-nrow(tab),-3]
tab
}
和新的基于dplyr
tab2 = function(x, useNA =FALSE) {
if(!useNA) if(any(is.na(x))) x = na.omit(x)
n = length(x)
out = data.frame(x,1) %.%
group_by(x) %.%
dplyr::summarise(
Freq = length(X1),
Percent = Freq/n
) %.%
dplyr::arrange(x)
ids = as.character(out$x)
ids[is.na(ids)] = '<NA>'
out = select(out, Freq, Percent)
out$cum = cumsum(out$Percent)
class(out)="data.frame"
out = rbind(out,c(n,1,NA))
rownames(out) = c(ids,'')
out
}
最后,一些性能基准:
x1 = c(rep('ARSON',462),rep('BURGLARY',22767))
x2 = c(rep('ARSON',462),rep('BURGLARY',22767),rep(NA,100))
x3 = c(c(1:10),c(1:10),1,4)
x4 = c(rep(c(1:100),500),rep(c(1:50),20),1,4)
library('rbenchmark')
benchmark(tab(x1), tab2(x1), replications=100)[,c('test','elapsed','relative')]
# test elapsed relative
# 1 tab(x1) 1.412 2.307
# 2 tab2(x1) 0.612 1.000
benchmark(tab(x2),tab2(x2), replications=100)[,c('test','elapsed','relative')]
# test elapsed relative
# 1 tab(x2) 1.351 1.475
# 2 tab2(x2) 0.916 1.000
benchmark(tab(x2,useNA=TRUE), tab2(x2,useNA=TRUE), replications=100)[,c('test','elapsed','relative')]
# test elapsed relative
# 1 tab(x2, useNA = TRUE) 1.883 2.282
# 2 tab2(x2, useNA = TRUE) 0.825 1.000
benchmark(tab(x3), tab2(x3), replications=1000)[,c('test','elapsed','relative')]
# test elapsed relative
# 1 tab(x3) 0.997 1.000
# 2 tab2(x3) 2.194 2.201
benchmark(tab(x4), tab2(x4), table(x4), replications=100)[,c('test','elapsed','relative')]
# test elapsed relative
# 1 tab(x4) 19.481 18.714
# 2 tab2(x4) 1.041 1.000
# 3 table(x4) 6.515 6.258
tab2
除了非常短的向量外更快。性能增益在较大的向量中变得明显(参见x4
,51002 obs)。它甚至比table
更快,甚至认为该功能正在做更多的事情。
现在我的问题是:如何进一步提高绩效?创建具有频率和百分比的表是一个非常标准的应用程序,当您使用大型数据集时,快速实现非常好。
编辑:这是一个带有2e6向量的附加测试用例(包括下面提出的data.table
解决方案)
x5 = sample(c(1:100),2e6, replace=TRUE)
benchmark(tab(x5), tab2(x5), table(x5), tabdt(x5), replications=100)[,c('test','elapsed','relative')]
# test elapsed relative
# 1 tab(x5) 350.878 19.444
# 2 tab2(x5) 52.917 2.932
# 4 tabdt(x5) 18.046 1.000
# 3 table(x5) 98.429 5.454
答案 0 :(得分:8)
由于我是library(data.table)
的忠实粉丝,我写了类似的功能:
tabdt <- function(x){
n <- length(which(!is.na(x)))
dt <- data.table(x)
out <- dt[, list(Freq = .N, Percent = .N / n), by = x]
out[!is.na(x), CumSum := cumsum(Percent)]
out
}
> benchmark(tabdt(x1), tab2(x1), replications=1000)[,c('test','elapsed','relative')]
test elapsed relative
2 tab2(x1) 5.60 1.879
1 tabdt(x1) 2.98 1.000
> benchmark(tabdt(x2), tab2(x2), replications=1000)[,c('test','elapsed','relative')]
test elapsed relative
2 tab2(x2) 6.34 1.686
1 tabdt(x2) 3.76 1.000
> benchmark(tabdt(x3), tab2(x3), replications=1000)[,c('test','elapsed','relative')]
test elapsed relative
2 tab2(x3) 1.65 1.000
1 tabdt(x3) 2.34 1.418
> benchmark(tabdt(x4), tab2(x4), replications=1000)[,c('test','elapsed','relative')]
test elapsed relative
2 tab2(x4) 14.35 1.000
1 tabdt(x4) 22.04 1.536
因此,data.table
和x1
的{{1}}方法更快,而x2
和dplyr
的{{1}}速度更快。实际上,我认为使用这些方法没有任何改进的余地。
P.S。您会在此问题中添加x3
关键字吗?我相信人们会希望看到x4
与data.table
效果比较(例如,请参阅data.table vs dplyr: can one do something well the other can't or does poorly?)。