所以现在,如果我复制一个列表,即x = [1,2,3]* 2 I get x as [1,2,3,1,2,3]
但这对Pandas不起作用。
因此,如果我想要复制PANDAS DF,我必须将列设为列表并且多个:
col_x_duplicates = list(df['col_x'])*N
new_df = DataFrame(col_x_duplicates, columns=['col_x'])
然后对原始数据进行连接:
pd.merge(new_df, df, on='col_x', how='left')
现在重复大熊猫DF N次,有更简单的方法吗?甚至更快的方式?
答案 0 :(得分:5)
实际上,既然你想复制整个数据框(而不是每个元素),那么numpy.tile()可能会更好:
In [69]: import pandas as pd
In [70]: arr = pd.np.array([[1, 2, 3], [4, 5, 6]])
In [71]: arr
Out[71]:
array([[1, 2, 3],
[4, 5, 6]])
In [72]: df = pd.DataFrame(pd.np.tile(arr, (5, 1)))
In [73]: df
Out[73]:
0 1 2
0 1 2 3
1 4 5 6
2 1 2 3
3 4 5 6
4 1 2 3
5 4 5 6
6 1 2 3
7 4 5 6
8 1 2 3
9 4 5 6
[10 rows x 3 columns]
In [75]: df = pd.DataFrame(pd.np.tile(arr, (1, 3)))
In [76]: df
Out[76]:
0 1 2 3 4 5 6 7 8
0 1 2 3 1 2 3 1 2 3
1 4 5 6 4 5 6 4 5 6
[2 rows x 9 columns]
答案 1 :(得分:1)
这是使用 n
个 DataFrame df
副本制作 DataFrame 的单行代码
n_df = pd.concat([df] * n)
示例:
df = pd.DataFrame(
data=[[34, 'null', 'mark'], [22, 'null', 'mark'], [34, 'null', 'mark']],
columns=['id', 'temp', 'name'],
index=pd.Index([1, 2, 3], name='row')
)
n = 4
n_df = pd.concat([df] * n)
那么 n_df
是以下数据帧:
id temp name
row
1 34 null mark
2 22 null mark
3 34 null mark
1 34 null mark
2 22 null mark
3 34 null mark
1 34 null mark
2 22 null mark
3 34 null mark
1 34 null mark
2 22 null mark
3 34 null mark