由NullPointerException引起的初始化程序中的异常

时间:2014-01-26 09:14:11

标签: java

我正在通过以下链接在Eclipse Indigo上运行Lip阅读代码:https://github.com/sagioto/LipReading/blob/master/lipreading-core/src/main/java/edu/lipreading/vision/NoMoreStickersFeatureExtractor.java

代码是:

package edu.lipreading.vision;

import static com.googlecode.javacv.cpp.opencv_core.IPL_DEPTH_8U;
import static com.googlecode.javacv.cpp.opencv_core.cvCircle;
import static com.googlecode.javacv.cpp.opencv_core.cvClearMemStorage;
import static com.googlecode.javacv.cpp.opencv_core.cvCreateImage;
import static com.googlecode.javacv.cpp.opencv_core.cvGetSeqElem;
import static com.googlecode.javacv.cpp.opencv_core.cvLoad;
import static com.googlecode.javacv.cpp.opencv_core.cvResetImageROI;
import static com.googlecode.javacv.cpp.opencv_core.cvSetImageROI;
import static com.googlecode.javacv.cpp.opencv_core.cvSize;
import static com.googlecode.javacv.cpp.opencv_imgproc.CV_COUNTER_CLOCKWISE;
import static com.googlecode.javacv.cpp.opencv_imgproc.CV_RGB2GRAY;
import static com.googlecode.javacv.cpp.opencv_imgproc.cvCvtColor;
import static com.googlecode.javacv.cpp.opencv_objdetect.CV_HAAR_FIND_BIGGEST_OBJECT;
import static com.googlecode.javacv.cpp.opencv_objdetect.cvHaarDetectObjects;

import java.io.File;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.List;
import java.util.Vector;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrix;

import com.googlecode.javacpp.Loader;
import com.googlecode.javacv.cpp.opencv_core.CvMat;
import com.googlecode.javacv.cpp.opencv_core.CvMemStorage;
import com.googlecode.javacv.cpp.opencv_core.CvPoint;
import com.googlecode.javacv.cpp.opencv_core.CvRect;
import com.googlecode.javacv.cpp.opencv_core.CvScalar;
import com.googlecode.javacv.cpp.opencv_core.CvSeq;
import com.googlecode.javacv.cpp.opencv_core.IplImage;
import com.googlecode.javacv.cpp.opencv_objdetect;
import com.googlecode.javacv.cpp.opencv_objdetect.CvHaarClassifierCascade;

import edu.lipreading.Constants;
import edu.lipreading.Utils;

/**
 * This FeatureExtractor extracts lip coordinates automatically by identifying user lips.
 */
public class NoMoreStickersFeatureExtractor extends AbstractFeatureExtractor{
        private static final int RECT_VERTICAL_JUMP = 10;
        private static final int RECT_FRAME_THRESHOLD = 5;
        private final ExecutorService executor = Executors.newCachedThreadPool();
        private IplImage manipulated;
        private CvRect prev = new CvRect();
    private CvHaarClassifierCascade classifier;
        private CvMemStorage storage;
    private int sideConfidence;
        private int lowerConfidence;
        private int upperConfidence;
        private int rectFrameCount = 0;

        public List<Integer> getPoints(IplImage grabbed) throws Exception {
        int roiFix = grabbed.height() / -32;
                sideConfidence = grabbed.width() / 128;
                lowerConfidence = grabbed.height() / 128;
                upperConfidence = grabbed.width() / 32;

                if(manipulated == null)
                        manipulated = cvCreateImage(cvSize(grabbed.width(), grabbed.height()), IPL_DEPTH_8U, 1);
                if(storage == null || classifier == null)
                        init();
                cvClearMemStorage(storage);
                cvCvtColor(grabbed, manipulated, CV_RGB2GRAY);
                CvSeq mouths = cvHaarDetectObjects(manipulated, classifier, storage, 1.8, 13, CV_HAAR_FIND_BIGGEST_OBJECT);
                CvRect r = new CvRect(cvGetSeqElem(mouths, 0));
                if(r.isNull()){
                        return null;
                } else if (prev.y() != 0 && rectFrameCount < RECT_FRAME_THRESHOLD){
                        if (Math.abs(r.y() - prev.y()) > RECT_VERTICAL_JUMP){
                                CvRect.memcpy(r, prev, prev.sizeof());
                                rectFrameCount++;
                        }
                } else if (rectFrameCount >= RECT_FRAME_THRESHOLD){
                        rectFrameCount = 0;
                }
                CvRect.memcpy(prev, r, r.sizeof());
                r.y(r.y() + roiFix);
                final int x = r.x(), y = r.y();
                cvSetImageROI(grabbed, r);
                final CvMat mat = grabbed.asCvMat();

                List<Future<int[]>> points = new Vector<Future<int[]>>();
                final Future<double[][]> getH = executor.submit(new Callable<double[][]>() {
                        @Override
                        public double[][] call() throws Exception {
                                return getH(mat);
                        }
                });
                final Future<double[][]> getL = executor.submit(new Callable<double[][]>() {
                        @Override
                        public double[][] call() throws Exception {
                                return getL(mat);
                        }
                });
                final Future<double[][]> getLmini = executor.submit(new Callable<double[][]>() {
                        @Override
                        public double[][] call() throws Exception {
                                return Lmini(getL.get());
                        }
                });
                final Future<int[]> getRight = executor.submit(new Callable<int[]>() {
                        @Override
                        public int[] call() throws Exception {
                                return getRight(getL.get(), getLmini.get());
                        }
                });
                points.add(getRight);
                final Future<int[]> getLeft = executor.submit(new Callable<int[]>() {
                        @Override
                        public int[] call() throws Exception {
                                return getLeft(getL.get(), getLmini.get());
                        }
                });
                points.add(getLeft);
                final Future<int[]> getUpper = executor.submit(new Callable<int[]>() {
                        @Override
                        public int[] call() throws Exception {
                                return getUpper(getL.get(), getH.get(), getRight.get()[0], getLeft.get()[0]);
                        }

                });
                points.add(getUpper);
                final Future<int[]> getLower = executor.submit(new Callable<int[]>() {
                        @Override
                        public int[] call() throws Exception {
                                return getLower(getL.get(), getUpper.get()[0]);
                        }
                });
                points.add(getLower);

                List<Integer> frameCoordinates = new Vector<Integer>();

                for (Future<int[]> point : points) {
                        int coordinateX = point.get()[0] + x, coordinateY = point.get()[1] + y;
                        frameCoordinates.add(coordinateX);
                        frameCoordinates.add(coordinateY);
                }
                cvResetImageROI(grabbed);
                //cvRectangle(grabbed, cvPoint(x, y), cvPoint(x+r.width(), y+r.height()), CvScalar.GREEN, 1, CV_AA, 0);
                return frameCoordinates;
        }


   /* public List<Integer> getPointsSingleThreaded(IplImage grabbed) throws Exception {
        int roiFix = grabbed.height() / -32;
                sideConfidence = grabbed.width() / 128;
                lowerConfidence = grabbed.height() / 128;
                upperConfidence = grabbed.width() / 32;

                if(manipulated == null)
                        manipulated = cvCreateImage(cvSize(grabbed.width(), grabbed.height()), IPL_DEPTH_8U, 1);
                if(storage == null || classifier == null)
                        init();
                cvClearMemStorage(storage);
                cvCvtColor(grabbed, manipulated, CV_RGB2GRAY);
                CvSeq mouths = cvHaarDetectObjects(manipulated, classifier, storage, 1.8, 13, CV_HAAR_FIND_BIGGEST_OBJECT);
                CvRect r = new CvRect(cvGetSeqElem(mouths, 0));
                if(r.isNull()){
                        return null;
                } else if (prev.y() != 0 && rectFrameCount < RECT_FRAME_THRESHOLD){
                        if (Math.abs(r.y() - prev.y()) > RECT_VERTICAL_JUMP){
                                CvRect.memcpy(r, prev, prev.sizeof());
                                rectFrameCount++;
                        }
                } else if (rectFrameCount >= RECT_FRAME_THRESHOLD){
                        rectFrameCount = 0;
                }
                CvRect.memcpy(prev, r, r.sizeof());
                r.y(r.y() + roiFix);
                final int x = r.x(), y = r.y();
                cvSetImageROI(grabbed, r);
                final CvMat mat = grabbed.asCvMat();

        List<Integer> frameCoordinates = new Vector<Integer>();
        frameCoordinates.add(r.x());
        frameCoordinates.add(r.x() + r.width());
        frameCoordinates.add(r.y());
        frameCoordinates.add(r.y() + r.height());
        return frameCoordinates;
        double[][] h = getH(mat);
        double[][] l = getL(mat);
        double[][] lmini = Lmini(l);

        int[] right = getRight(l, lmini);
        frameCoordinates.add(right[0] + x);
        frameCoordinates.add(right[1] + y);

        int[] left = getLeft(l, lmini);
        frameCoordinates.add(left[0] + x);
        frameCoordinates.add(left[1] + y);

        int[] upper = getUpper(l, h, right[0], left[0]);
        frameCoordinates.add(upper[0] + x);
        frameCoordinates.add(upper[1] + y);

        int[] lower = getLower(l, upper[0]);
        frameCoordinates.add(lower[0] + x);
        frameCoordinates.add(lower[1] + y);

                cvResetImageROI(grabbed);
                //cvRectangle(grabbed, cvPoint(x, y), cvPoint(x+r.width(), y+r.height()), CvScalar.GREEN, 1, CV_AA, 0);
                return frameCoordinates;
        }*/

        private void init() throws Exception {
                Loader.load(opencv_objdetect.class);
                String fileNameFromUrl = Utils.getFileNameFromUrl(Constants.HAAR_CASCADE_MOUTH_FILE);
                if(!new File(fileNameFromUrl).exists())
                        Utils.get(Constants.HAAR_CASCADE_MOUTH_FILE);
                classifier = new CvHaarClassifierCascade(cvLoad(Utils.getFileNameFromUrl(fileNameFromUrl)));
                storage = CvMemStorage.create();
        }

        @Override
        public void paintCoordinates(IplImage grabbed,
                        List<Integer> frameCoordinates) {
                if(frameCoordinates != null){
                        for (int i = 0; i < frameCoordinates.size(); i += 2) {
                                cvCircle(grabbed,
                                                new CvPoint(frameCoordinates.get(i),
                                                                frameCoordinates.get(i + 1)),
                                                                1, CvScalar.GREEN, 3, 0, 0);
                        }
                }
        }

        protected int[] getLower(double[][] L, int centerLine) {
                RealMatrix matrixL = new Array2DRowRealMatrix(L);
                double[] column = matrixL.getColumn(centerLine);
                for (int i = column.length - 1; i >= 0; i--) {
                        boolean found = true;
                        for (int j = i; j > Math.max(i - lowerConfidence, 0) && found; j--) {
                                found &= column[j] < column[j - 1];
                        }
                        if(found)
                                return new int[] {centerLine, i};
                }
                return new int []{centerLine,column.length * 3 / 4};
        }


        protected int[] getUpper(double[][] L, double[][] h, int right, int left) {
                RealMatrix matrixL = new Array2DRowRealMatrix(L);
                RealMatrix matrixH = new Array2DRowRealMatrix(h);
                RealMatrix hMinusL = matrixH.subtract(matrixL);
                int centerLine = (int)Math.round((double)(right + left) / 2);
                double[] column = hMinusL.getColumn(centerLine);
                // find first getting up
                boolean found = false;
                int y = 0;
                for(int i = 0; i < column.length - 1 && !found; i++){
                        if(column[i] <= column[i + 1]){
                                y = i;
                                found = true;
                                for (int j = i + 2; j < Math.min(column.length, i + upperConfidence) && found; j++){
                                        found &= column[i] < column[j];
                                }
                        }
                }
                return new int[]{centerLine, y};
        }


        /**
         * @param roi a matrix of the roi pixels arranged as BGR
         * @return the Hue matrix
         */
         private double[][] getH(CvMat roi){
                double[][] h = new double[roi.rows()][roi.cols()];
                double max = Double.MIN_VALUE;
                for (int i = 0; i < roi.rows(); i++) {
                        for (int j = 0; j < roi.cols(); j++) {
                                double R = roi.get(i, j , 2), G = roi.get(i, j , 1);
                                //h = R / (G + R)
                                                h[i][j] = R / (G + R);
                                max = Math.max(max, h[i][j]);
                        }
                }
                //scale values to be between 0 - 1
                for (int i = 0; i < roi.rows(); i++) {
                        for (int j = 0; j < roi.cols(); j++) {
                                h[i][j] /= max;
                        }
                }
                return h;
         }

         /**
          * @param roi a matrix of the roi pixels arranged as BGR
          * @return the luminance matrix
          */
         private double[][] getL(CvMat roi){
                 double[][] L = new double[roi.rows()][roi.cols()];
                 double max = Double.MIN_VALUE;
                 for (int i = 0; i < roi.rows(); i++) {
                         for (int j = 0; j < roi.cols(); j++) {
                                 //L = (R + R + B + G + G + G) / 6
                                 double R = roi.get(i, j , 2), G = roi.get(i, j , 1), B = roi.get(i, j , 0);
                                 L[i][j] = (R + R + B + G + G + G) / 6;
                                 max = Math.max(max, L[i][j]);
                         }
                 }
                 //scale values to be between 0 - 1
                 for (int i = 0; i < roi.rows(); i++) {
                         for (int j = 0; j < roi.cols(); j++) {
                                 L[i][j] /= max;
                         }
                 }
                 return L;
         }


         /**
          * @param L the luminance matrix
          * @return both the Lmini line in 0 index and in [1][0] the mean luminance of Lmini
          */
         private double[][] Lmini(double [][] L){
                 RealMatrix l = new Array2DRowRealMatrix(L);
                 double[][] Lmini = new double[2][L[0].length];
                 for (int i = 0; i < L[0].length; i++) {
                         double[] column = l.getColumn(i);
                         int minIndex = Utils.getMinIndex(column, false);
                         Lmini[0][i] = minIndex;
                         Lmini[1][0] += column[minIndex];
                 }
                 Lmini[1][0] /= L[0].length;
                 return Lmini;
         }

         private int[] getRight(double[][] L, double[][] Lmini){
                 final int[] ans = new int[2];
                 final double meanL = Lmini[1][0];
                 for (int i = Lmini[0].length - 1; i >= 0; i--) {
                         if(L[(int)Lmini[0][i]][i] < meanL){
                                 boolean found = true;
                                 for (int j = i; j > Math.max(i - sideConfidence, 0) && found; j--) {
                                         found &= L[(int)Lmini[0][j]][j] < meanL;
                                 }
                                 if(found)
                                         return new int[] {i, (int)Lmini[0][i]};
                         }
                 }
                 return ans;
         }

         private int[] getLeft(double[][] L, double[][] Lmini){
                 final int[] ans = new int[2];
                 final double meanL = Lmini[1][0];
                 for (int i = 0; i < Lmini[0].length; i++) {
                         if(L[(int)Lmini[0][i]][i] < meanL){
                                 boolean found = true;
                                 for (int j = i; j < Math.min(i + sideConfidence, Lmini[0].length) && found; j++) {
                                         found &= L[(int)Lmini[0][j]][j] < meanL;
                                 }
                                 if(found)
                                         return new int[] {i, (int)Lmini[0][i]};
                         }
                 }
                 return ans;
         }

    public void setClassifier(CvHaarClassifierCascade classifier) {
        this.classifier = classifier;
    }

    public void setStorage(CvMemStorage storage) {
        this.storage = storage;
    }


         public void shutdown(){
                 executor.shutdownNow();
                 if(storage != null)
                         storage.release();
         }

         public static void main(String ... args) throws Exception{
                 NoMoreStickersFeatureExtractor fe = new NoMoreStickersFeatureExtractor();
                 //fe.setOutput(true);
                 fe.extract( null );
                 fe.shutdown();
     }

}

运行时出现以下错误:

Exception in thread "main" java.lang.ExceptionInInitializerError
    at main.java.edu.lipreading.vision.NoMoreStickersFeatureExtractor.init(NoMoreStickersFeatureExtractor.java:216)
    at main.java.edu.lipreading.vision.NoMoreStickersFeatureExtractor.getPoints(NoMoreStickersFeatureExtractor.java:70)
    at main.java.edu.lipreading.vision.AbstractFeatureExtractor.getPoints(AbstractFeatureExtractor.java:82)
    at main.java.edu.lipreading.vision.AbstractFeatureExtractor.extract(AbstractFeatureExtractor.java:37)
    at main.java.edu.lipreading.vision.NoMoreStickersFeatureExtractor.main(NoMoreStickersFeatureExtractor.java:389)
Caused by: java.lang.NullPointerException
    at java.util.Properties$LineReader.readLine(Unknown Source)
    at java.util.Properties.load0(Unknown Source)
    at java.util.Properties.load(Unknown Source)
    at main.java.edu.lipreading.Constants.<clinit>(Constants.java:16)
    ... 5 more

***** VIDEOINPUT LIBRARY - 0.1995 - TFW07 *****

SETUP: Setting up device 0
SETUP: 1.3M HD WebCam
SETUP: Couldn't find preview pin using SmartTee
SETUP: Capture callback set
SETUP: Device is setup and ready to capture.

1 个答案:

答案 0 :(得分:1)

错误是来自第{16行的Constants class的NullPointerException。

您可以在该行看到,程序正在尝试加载lr.properties文件。

问题可能是文件不在您的类路径中。将该文件添加到类路径以防止此错误