假设我有两个字符向量a
和b
:
set.seed(123)
categ <- c("Control", "Gr", "Or", "PMT", "P450")
genes <- paste(categ, rep(1:40, each=length(categ)), sep="_")
a0 <- paste(genes, "_", rep(1:50, each=length(genes)), "_", sep="")
b0 <- paste (a0, "1", sep="")
ite <- 200
lg <- 2000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]
我想应用grep
函数,以查找a
中b
的每个值的匹配项。
我当然可以这样做:
sapply(a, grep, b)
但是我想知道是否有更高效的东西,因为我必须在模拟中为更大的向量运行这么多次(注意我不想使用mclapply
因为我已经使用它运行我的模拟的每次迭代):
system.time(lapply(seq(100000), function(x) sapply(a, grep, b)))
library(parallel)
system.time(mclapply(seq(100000), function(x) sapply(a, grep, b), mc.cores=8))
答案 0 :(得分:8)
由于您不使用正则表达式但希望在较长字符串中查找子字符串,因此可以使用fixed = TRUE
。它要快得多。
library(microbenchmark)
microbenchmark(lapply(a, grep, b), # original
lapply(paste0("^", a), grep, b), # @flodel
lapply(a, grep, b, fixed = TRUE))
Unit: microseconds
expr min lq median uq max neval
lapply(a, grep, b) 112.633 114.2340 114.9390 116.0990 326.857 100
lapply(paste0("^", a), grep, b) 119.949 121.7380 122.7425 123.9775 191.851 100
lapply(a, grep, b, fixed = TRUE) 21.004 22.5885 23.8580 24.6110 33.608 100
使用较长的矢量进行测试(原始长度的1000倍)。
ar <- rep(a, 1000)
br <- rep(b, 1000)
library(microbenchmark)
microbenchmark(lapply(ar, grep, br), # original
lapply(paste0("^", ar), grep, br), # @flodel
lapply(ar, grep, br, fixed = TRUE))
Unit: seconds
expr min lq median uq max neval
lapply(ar, grep, br) 32.288139 32.564223 32.726149 32.97529 37.818299 100
lapply(paste0("^", ar), grep, br) 24.997339 25.343401 25.531138 25.71615 28.238802 100
lapply(ar, grep, br, fixed = TRUE) 2.461934 2.494759 2.513931 2.55375 4.194093 100
(这花了很长时间......)
答案 1 :(得分:3)
继我最后的建议......
您所问的最大问题是,先验,您需要进行length(a) * length(b)
比较。但是,您可以利用这里的匹配仅发生在字符串的开头(我从评论中收集的内容)这一事实。
我建议您在查看第一个单词(“或”,“Gr”,“控制”,“PMT”等)之后先将a
和b
个向量拆分为列表。在每个项目中,然后只查找相应集合中的匹配项。换句话说,请使用以a
开头的Or_
中的项目,仅查找b
中同样以Or_
开头的项目中的匹配项。
让您了解为什么这在复杂性方面是有效的。想象一下,a
和b
的长度均为n
;有x
个可能的前缀,在a
和b
中均匀分布。然后,在您的情况下,您只需要与x * (n/x * n/x)
进行n * n
比较。这比较少x
倍。你甚至可以想象以递归的方式使用第二个单词,第三个等重复这个过程。
现在这里是代码:
reduced.match <- function(a, b) {
first.word <- function(string) sub("_.*", "", string)
a.first <- first.word(a)
b.first <- first.word(b)
l.first <- unique(c(a.first, b.first))
a.first <- factor(a.first, l.first)
b.first <- factor(b.first, l.first)
a.split <- split(a, a.first)
b.split <- split(b, b.first)
a.idx.split <- split(seq_along(a), a.first)
b.idx.split <- split(seq_along(b), b.first)
unsorted.matches <-
Map(function(a, b, i) lapply(a, function(x) i[grep(x, b, fixed = TRUE)]),
a.split, b.split, b.idx.split, USE.NAMES = FALSE)
sorted.matches <-
unlist(unsorted.matches, recursive = FALSE)[
match(seq_along(a), unlist(a.idx.split))]
return(sorted.matches)
}
# sample data
set.seed(123)
n <- 10000
words <- paste0(LETTERS, LETTERS, LETTERS)
a <- paste(sample(words[-1], n, TRUE),
sample(words, n, TRUE), sep = "_")
b <- paste(sample(words[-2], n, TRUE),
sample(words, n, TRUE), sep = "_")
# testing
identical(reduced.match(a, b), lapply(a, grep, b, fixed = TRUE))
# [1] TRUE
# benchmarks
system.time(reduced.match(a, b))
# user system elapsed
# 0.187 0.000 0.187
system.time(lapply(a, grep, b, fixed = TRUE))
# user system elapsed
# 2.915 0.002 2.920
答案 2 :(得分:3)
如果a和b被排序(并且是唯一的)并且一个人对字符串开头的完全匹配感兴趣,那么下面的C代码通常会相对有效(长度(a)+长度的顺序) (b)字符串比较?)。 R包装器确保C代码和R用户获得适当的数据。
f3 <- local({
library(inline)
.amatch <- cfunction(c(a="character", b="character"),
includes="#include <string.h>", '
int len_a = Rf_length(a), len_b = Rf_length(b);
SEXP ans = PROTECT(allocVector(INTSXP, len_b));
memset(INTEGER(ans), 0, sizeof(int) * len_b);
int cmp, i = 0, j = 0;
while (i < len_a) {
const char *ap = CHAR(STRING_ELT(a, i));
while (j < len_b) {
cmp = strncmp(ap, CHAR(STRING_ELT(b, j)), strlen(ap));
if (cmp > 0) {
j += 1;
} else break;
}
if (j == len_b)
break;
if (cmp == 0)
INTEGER(ans)[j++] = i + 1;
else if (cmp < 0) i += 1;
}
UNPROTECT(1);
return(ans);')
function(a, b) {
locale = Sys.getlocale("LC_COLLATE")
if (locale != "C") {
warning('temporarily trying to set LC_COLLATE to "C"')
Sys.setlocale("LC_COLLATE", "C")
on.exit(Sys.setlocale("LC_COLLATE", locale))
}
a0 <- a
lvls <- unique(a)
a <- sort(lvls)
o <- order(b)
idx <- .amatch(a, b[o])[order(o)]
f <- factor(a[idx[idx != 0]], levels=lvls)
split(which(idx != 0), f)[a0]
}
})
与这个半友好的grep相比
f0 <- function(a, b) {
a0 <- a
a <- unique(a)
names(a) <- a
lapply(a, grep, b, fixed=TRUE)[a0]
}
允许(但不会付出太多代价)复制'a'值@ flodel的数据集的时间是
> microbenchmark(f0(a, b), f3(a, b), times=5)
Unit: milliseconds
expr min lq median uq max neval
f0(a, b) 431.03595 431.45211 432.59346 433.96036 434.87550 5
f3(a, b) 15.70972 15.75976 15.93179 16.05184 16.06767 5
不幸的是,当一个元素是另一个元素的前缀
时,这个简单的算法会失败> str(f0(c("a", "ab"), "abc"))
List of 2
$ : chr "abc"
$ : chr "abc"
> str(f3(c("a", "ab"), "abc"))
List of 2
$ : chr "abc"
$ : chr(0)
与评论相反,对于此数据集(需要为可重复性指定随机数种子)
set.seed(123)
categ <- c("Control", "Gr", "Or", "PMT", "P450")
genes <- paste(categ, rep(1:40, each=length(categ)), sep="_")
a0 <- paste0(genes, "_", rep(1:50, each=length(genes)), "_")
b0 <- paste0(a0, "1")
ite <- 50
lg <- 1000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]
f3()
返回与grep
> identical(unname(f3(a, b)), lapply(a, grep, b, fixed=TRUE))
[1] TRUE
已修改算法f0和f3以返回命名列表中的索引。
答案 3 :(得分:1)
我在自己的数据上测试了@flodel和@Sven Hohenstein提出的不同解决方案(注意@Martin Morgan的方法暂时无法测试,因为它不支持a
的元素。 a
)的其他元素的前缀。
重要说明:尽管所有方法都在我的具体情况下给出了相同的结果,但提醒他们都有自己的方式,因此可以根据数据的结构给出不同的结果
以下是快速摘要(结果如下所示):
length(a)
和length(b)
分别设置为200或400和2,000或10,000 a
b
的每个值只有一个匹配项
pmatch
总是表现得非常好(特别是对于较小长度的向量a
和b
,分别小于100和1,000 - 未在下面显示),sapply(a, grep, b, fixed=T)
和reduced.match
(flodel方法)功能的效果始终优于sapply(a, grep, b))
和sapply(paste0("^", a), grep, b)
。以下是可重现的代码以及测试结果
# set up the data set
library(microbenchmark)
categ <- c("Control", "Gr", "Or", "PMT", "P450")
genes <- paste(categ, rep(1:40, each=length(categ)), sep="_")
a0 <- paste(genes, "_", rep(1:50, each=length(genes)), "_", sep="")
b0 <- paste (a0, "1", sep="")
# length(a)==200 & length(b)==2,000
ite <- 200
lg <- 2000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]
microbenchmark(as.vector(sapply(a, grep, b)), # original
as.vector(sapply(paste0("^", a), grep, b)), # @flodel 1
as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
unlist(reduced.match(a, b)), # @ flodel 2
#~ f3(a, b), @Martin Morgan
pmatch(a, b))
Unit: milliseconds
expr min lq median
as.vector(sapply(a, grep, b)) 188.810585 189.256705 189.827765
as.vector(sapply(paste0("^", a), grep, b)) 157.600510 158.113507 158.560619
as.vector(sapply(a, grep, b, fixed = TRUE)) 23.954520 24.109275 24.269991
unlist(reduced.match(a, b)) 7.999203 8.087931 8.140260
pmatch(a, b) 7.459394 7.489923 7.586329
uq max neval
191.412879 222.131220 100
160.129008 186.695822 100
25.923741 26.380578 100
8.237207 10.063783 100
7.637560 7.888938 100
# length(a)==400 & length(b)==2,000
ite <- 400
lg <- 2000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]
microbenchmark(as.vector(sapply(a, grep, b)), # original
as.vector(sapply(paste0("^", a), grep, b)), # @flodel 1
as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
unlist(reduced.match(a, b)), # @ flodel 2
#~ f3(a, b), @Martin Morgan
pmatch(a, b))
Unit: milliseconds
expr min lq median
as.vector(sapply(a, grep, b)) 376.85638 379.58441 380.46107
as.vector(sapply(paste0("^", a), grep, b)) 314.38333 316.79849 318.33426
as.vector(sapply(a, grep, b, fixed = TRUE)) 49.56848 51.54113 51.90420
unlist(reduced.match(a, b)) 13.31185 13.44923 13.57679
pmatch(a, b) 15.15788 15.24773 15.36917
uq max neval
383.26959 415.23281 100
320.92588 346.66234 100
52.02379 81.65053 100
15.56503 16.83750 100
15.45680 17.58592 100
# length(a)==200 & length(b)==10,000
ite <- 200
lg <- 10000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]
microbenchmark(as.vector(sapply(a, grep, b)), # original
as.vector(sapply(paste0("^", a), grep, b)), # @flodel 1
as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
unlist(reduced.match(a, b)), # @ flodel 2
#~ f3(a, b), @Martin Morgan
pmatch(a, b))
Unit: milliseconds
expr min lq median
as.vector(sapply(a, grep, b)) 975.34831 978.55579 981.56864
as.vector(sapply(paste0("^", a), grep, b)) 808.79299 811.64919 814.16552
as.vector(sapply(a, grep, b, fixed = TRUE)) 119.64240 120.41718 120.73548
unlist(reduced.match(a, b)) 34.23893 34.56048 36.23506
pmatch(a, b) 37.57552 37.82128 38.01727
uq max neval
986.17827 1061.89808 100
824.41931 854.26298 100
121.20605 151.43524 100
36.57896 43.33285 100
38.21910 40.87238 100
# length(a)==400 & length(b)==10500
ite <- 400
lg <- 10000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]
microbenchmark(as.vector(sapply(a, grep, b)), # original
as.vector(sapply(paste0("^", a), grep, b)), # @flodel 1
as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
unlist(reduced.match(a, b)), # @ flodel 2
#~ f3(a, b), @Martin Morgan
pmatch(a, b))
Unit: milliseconds
expr min lq median
as.vector(sapply(a, grep, b)) 1977.69564 2003.73443 2028.72239
as.vector(sapply(paste0("^", a), grep, b)) 1637.46903 1659.96661 1677.21706
as.vector(sapply(a, grep, b, fixed = TRUE)) 236.81745 238.62842 239.67875
unlist(reduced.match(a, b)) 57.18344 59.09308 59.48678
pmatch(a, b) 75.03812 75.40420 75.60641
uq max neval
2076.45628 2223.94624 100
1708.86306 1905.16534 100
241.12830 283.23043 100
59.76167 88.71846 100
75.99034 90.62689 100