这是我的BFS实现,它总是让我回归。我应该基本上找到通过这张地图的最短路径,1 - 意味着它是一堵墙,0 - 意味着没有墙。我在哪里错了?
class node { public: int x,y; };
int bfs(int x, int y)
{
node start;
int result = 0;
start.x = 0;
start.y = 0;
std::queue<node> search_queue;
bool visited[4][4];
int map[4][4] = {
{0,1,0,1},
{0,0,0,0},
{1,0,1,0},
{0,1,0,0}
};
for(int i = 0 ; i < 4; i ++)
{
for(int j = 0 ; j < 4; j++)
{
visited[i][j] = false;
}
}
search_queue.push(start);
while(!search_queue.empty())
{
node top = search_queue.front();
search_queue.pop();
if (visited[top.x][top.y]) continue;
if (map[top.x][top.y] == 1) continue;
if (top.x < 0 || top.x >= 4) continue;
if (top.y < 0 || top.y >= 4) continue;
visited[top.x][top.y] = true;
result++;
node temp;
temp.x = top.x+1;
temp.y=top.y;
search_queue.push(temp);
temp.x = top.x-1;
temp.y=top.y;
search_queue.push(temp);
temp.x = top.x;
temp.y=top.y+1;
search_queue.push(temp);
temp.x = top.x;
temp.y=top.y-1;
search_queue.push(temp);
}
return result;
}
我从主要那样称呼它:cout<<bfs(0,0);
答案 0 :(得分:2)
给定的代码产生10.通过一些修改,这里是live example。一个修改是将输入x
,y
设置为起点,我猜这是Jonathan Leffler在上面指出的意图。第二个修改是现在进行范围检查在推入队列之前,所以while循环修改如下:
while(!search_queue.empty())
{
node top = search_queue.front();
search_queue.pop();
if (visited[top.x][top.y]) continue;
if (map[top.x][top.y] == 1) continue;
visited[top.x][top.y] = true;
result++;
node temp;
temp.y = top.y;
if (top.x < 3)
{
temp.x = top.x + 1;
search_queue.push(temp);
}
if (top.x > 0)
{
temp.x = top.x - 1;
search_queue.push(temp);
}
temp.x = top.x;
if (top.y < 3)
{
temp.y = top.y + 1;
search_queue.push(temp);
}
if (top.y > 0)
{
temp.y = top.y - 1;
search_queue.push(temp);
}
}
现在,假设起点在范围内(并且您可以为此添加另一个检查),此循环将始终在范围内移动,并且它永远不会将超出范围的点放入队列中,从而节省了一些计算
此外,在您最初编写条件时,您可以在范围检查之前访问数组visited
和map
,这可能会产生错误结果。
最重要的是,如果您的目标是find the shortest path through this map
,则此算法不合适。数字10
是从(0,0)开始可以访问的所有位置的数量。它不是通往任何地方的最短路径。你需要的是一个最短路径算法,由于这里的图权重是正数,一个简单的选项是Dijsktra's algorithm。
这只需要对您的代码进行一些修改,但我留给您。基本上,您需要用整数数组visited
替换数组distance
,指定从起始位置到每个点的最小距离,初始化为“无穷大”并且仅减小。并且您的队列必须由优先级队列替换,以便通过增加距离来访问点。
答案 1 :(得分:1)
#include <iostream>
#include <queue>
class node { public: int x, y; };
int bfs(int x, int y)
{
node start;
int result = 0;
start.x = x;
start.y = y;
std::queue<node> search_queue;
bool visited[4][4];
int map[4][4] =
{
{0, 1, 0, 1},
{0, 0, 0, 0},
{1, 0, 1, 0},
{0, 1, 0, 0}
};
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
visited[i][j] = false;
}
}
search_queue.push(start);
while (!search_queue.empty())
{
node top = search_queue.front();
search_queue.pop();
if (visited[top.x][top.y])
continue;
if (map[top.x][top.y] == 1)
continue;
if (top.x < 0 || top.x >= 4)
continue;
if (top.y < 0 || top.y >= 4)
continue;
visited[top.x][top.y] = true;
std::cout << "visit: [" << top.x << "][" << top.y << "]\n";
result++;
node temp;
temp.x = top.x + 1;
temp.y = top.y;
search_queue.push(temp);
temp.x = top.x - 1;
temp.y = top.y;
search_queue.push(temp);
temp.x = top.x;
temp.y = top.y + 1;
search_queue.push(temp);
temp.x = top.x;
temp.y = top.y - 1;
search_queue.push(temp);
}
return result;
}
int main()
{
std::cout << bfs(0, 0);
}
产生
visit: [0][0]
visit: [1][0]
visit: [1][1]
visit: [2][1]
visit: [1][2]
visit: [0][2]
visit: [1][3]
visit: [2][3]
visit: [3][3]
visit: [3][2]
10
一个有趣的观点是它到达[3][3]
并继续;你好像没有明确定义。这占了额外计数之一(与应该预期的7相比)。 [2][1]
和[0][2]
个死胡同代表另外两个。基本上,当你走到死路并到达终点时,你需要递减result
。
#include <iostream>
#include <queue>
class node { public: int x, y; };
int bfs(int bx, int by, int ex, int ey)
{
node start;
int result = 0;
start.x = bx;
start.y = by;
std::queue<node> search_queue;
bool visited[4][4];
int map[4][4] =
{
{0, 1, 0, 1},
{0, 0, 0, 0},
{1, 0, 1, 0},
{0, 1, 0, 0}
};
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
visited[i][j] = false;
}
}
search_queue.push(start);
while (!search_queue.empty())
{
node top = search_queue.front();
search_queue.pop();
if (top.x < 0 || top.x >= 4)
continue;
if (top.y < 0 || top.y >= 4)
continue;
if (visited[top.x][top.y])
continue;
if (map[top.x][top.y] == 1)
continue;
visited[top.x][top.y] = true;
std::cout << "visit: [" << top.x << "][" << top.y << "]\n";
result++;
if (top.x == ex && top.y == ey)
break;
node temp;
temp.x = top.x + 1;
temp.y = top.y;
search_queue.push(temp);
temp.x = top.x - 1;
temp.y = top.y;
search_queue.push(temp);
temp.x = top.x;
temp.y = top.y + 1;
search_queue.push(temp);
temp.x = top.x;
temp.y = top.y - 1;
search_queue.push(temp);
}
return result;
}
int main()
{
std::cout << bfs(0, 0, 3, 3);
}
输出:
visit: [0][0]
visit: [1][0]
visit: [1][1]
visit: [2][1]
visit: [1][2]
visit: [0][2]
visit: [1][3]
visit: [2][3]
visit: [3][3]
9
#include <iostream>
#include <queue>
class node { public: int x, y, l; };
int bfs(int bx, int by, int ex, int ey)
{
node start;
int result = 0;
start.x = bx;
start.y = by;
start.l = 1;
std::queue<node> search_queue;
bool visited[4][4];
int map[4][4] =
{
{0, 1, 0, 1},
{0, 0, 0, 0},
{1, 0, 1, 0},
{0, 1, 0, 0}
};
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
visited[i][j] = false;
}
}
search_queue.push(start);
while (!search_queue.empty())
{
node top = search_queue.front();
search_queue.pop();
if (visited[top.x][top.y])
continue;
if (map[top.x][top.y] == 1)
continue;
if (top.x < 0 || top.x >= 4)
continue;
if (top.y < 0 || top.y >= 4)
continue;
visited[top.x][top.y] = true;
std::cout << "visit: [" << top.x << "][" << top.y << "] = " << top.l << "\n";
result = top.l;
if (top.x == ex && top.y == ey)
break;
node temp;
temp.l = top.l + 1;
temp.x = top.x + 1;
temp.y = top.y;
search_queue.push(temp);
temp.x = top.x - 1;
temp.y = top.y;
search_queue.push(temp);
temp.x = top.x;
temp.y = top.y + 1;
search_queue.push(temp);
temp.x = top.x;
temp.y = top.y - 1;
search_queue.push(temp);
}
return result;
}
int main()
{
std::cout << bfs(0, 0, 3, 3) << std::endl;
}
输出:
visit: [0][0] = 1
visit: [1][0] = 2
visit: [1][1] = 3
visit: [2][1] = 4
visit: [1][2] = 4
visit: [0][2] = 5
visit: [1][3] = 5
visit: [2][3] = 6
visit: [3][3] = 7
7
答案 2 :(得分:1)
您的代码只计算可访问单元格的数量。我假设您只想计算开始和结束之间的单元格(result
变量在此上下文中无用)。我通常使用这样的数据结构:
std::queue<pair<node,int> > search_queue;
从队列中提取元素时,代码如下所示:
node top = search_queue.front().first;
int current_length = search_queue.front().second;
// if (top == end) return current_length; (this is the value you are interested in)
将下一个元素添加到队列中当然是这样的:
search_queue.add(make_pair(temp, current_length + 1));
我希望完整的代码很容易从这里获得。
答案 3 :(得分:0)
我认为你必须调试类“node”的赋值结果。 它可能不起作用。
为此,您可以重载运算符“=”并添加一个默认构造函数,其参数参数类型为“node”。
答案 4 :(得分:0)
另一种方法
class Queue:
def __init__(self):
self.items=[]
def enqueue(self,item):
self.items.append(item)
def dequeue(self):
return self.items.pop(0)
def isEmpty(self):
return self.items==[]
def size(self):
return len(self.items)
class Vertex:
def __init__(self,id):
self.id=id
self.color="white"
self.dist=None
self.pred=None
self.sTime=0
self.fTime=0
self.connectedTo={}
def addNeighbor(self,nbr,weight):
self.connectedTo[nbr]=weight
def __str__(self):
return str(self.id)+"connectedTo"+str([x for x in self.connectedTo])
def getConnection(self):
return self.connectedTo.keys()
def getId(self):
return self.id
def getWeight(self,nbr):
return self.connectedTo[nbr]
def setColor(self,c):
self.color=c
def getColor(self):
return self.color
def setDistance(self,d):
self.dist=d
def getDistance(self):
return self.dist
def setPred(self,u):
self.pred=u
def getPred(self):
return self.pred
def getsTime(self):
return self.sTime
def getfTime(self):
return self.fTime
def setsTime(self,t):
self.sTime=t
def setfTime(self,t):
self.fTime=t
class Graph:
def __init__(self):
self.vertList={}
self.numVertices=0
self.time=0
def addVertex(self,id):
self.numVertices=self.numVertices+1
newVertex=Vertex(id)
self.vertList[id]=newVertex
def getVertex(self,id):
if id in self.vertList:
return self.vertList[id]
else:
return None
def __contains__(self,id):
return id in self.vertList
def addEdge(self,u,v,weight=0):
if u not in self.vertList:
self.addVertex(u)
if v not in self.vertList:
self.addVertex(v)
self.vertList[u].addNeighbor(self.vertList[v],weight)
def getVertices(self):
return self.vertList.keys()
def __iter__(self):
return iter(self.vertList.values())
def bfs(self,start):
self.vertList[start].setDistance(0)
self.vertList[start].setColor("gray")
q=Queue()
q.enqueue(self.vertList[start])
while(q.size()>0):
u=q.dequeue()
u.setColor("black")
for v in u.connectedTo:
if v.getColor()=="white":
v.setColor("gray")
v.setDistance(u.getDistance()+1)
v.setPred(u)
q.enqueue(v)
print"Id ",u.getId()," color ",u.getColor()," Distance ",u.getDistance()