Stargazer为lm(和其他)物体生产非常漂亮的乳胶桌。假设我按最大可能性拟合模型。我希望观星者为我的估计生成一个类似于lm的表格。我怎么能这样做?
虽然它有点hacky,但有一种方法可能是创建一个包含我估计值的“假”lm对象 - 我认为只要summary(my.fake.lm.object)有效,这就可以工作。这很容易吗?
一个例子:
library(stargazer)
N <- 200
df <- data.frame(x=runif(N, 0, 50))
df$y <- 10 + 2 * df$x + 4 * rt(N, 4) # True params
plot(df$x, df$y)
model1 <- lm(y ~ x, data=df)
stargazer(model1, title="A Model") # I'd like to produce a similar table for the model below
ll <- function(params) {
## Log likelihood for y ~ x + student's t errors
params <- as.list(params)
return(sum(dt((df$y - params$const - params$beta*df$x) / params$scale, df=params$degrees.freedom, log=TRUE) -
log(params$scale)))
}
model2 <- optim(par=c(const=5, beta=1, scale=3, degrees.freedom=5), lower=c(-Inf, -Inf, 0.1, 0.1),
fn=ll, method="L-BFGS-B", control=list(fnscale=-1), hessian=TRUE)
model2.coefs <- data.frame(coefficient=names(model2$par), value=as.numeric(model2$par),
se=as.numeric(sqrt(diag(solve(-model2$hessian)))))
stargazer(model2.coefs, title="Another Model", summary=FALSE) # Works, but how can I mimic what stargazer does with lm objects?
更确切地说:对于lm个对象,stargazer很好地打印表格顶部的因变量,包括相应估计值下面的括号中的SE,并且在表格的底部有R ^ 2和观察数量。是否有一种(简单的)方法来获得与最大似然估计的“自定义”模型相同的行为,如上所述?
以下是我将我的优化输出打扮成lm对象的微弱尝试:
model2.lm <- list() # Mimic an lm object
class(model2.lm) <- c(class(model2.lm), "lm")
model2.lm$rank <- model1$rank # Problematic?
model2.lm$coefficients <- model2$par
names(model2.lm$coefficients)[1:2] <- names(model1$coefficients)
model2.lm$fitted.values <- model2$par["const"] + model2$par["beta"]*df$x
model2.lm$residuals <- df$y - model2.lm$fitted.values
model2.lm$model <- df
model2.lm$terms <- model1$terms # Problematic?
summary(model2.lm) # Not working
答案 0 :(得分:2)
我只是遇到了这个问题并通过在观星者中使用coef
se
和omit
函数克服了这个问题......例如。
stargazer(regressions, ...
coef = list(... list of coefs...),
se = list(... list of standard errors...),
omit = c(sequence),
covariate.labels = c("new names"),
dep.var.labels.include = FALSE,
notes.append=FALSE), file="")
答案 1 :(得分:1)
您需要首先实例化一个虚拟lm
对象,然后打扮它:
#...
model2.lm = lm(y ~ ., data.frame(y=runif(5), beta=runif(5), scale=runif(5), degrees.freedom=runif(5)))
model2.lm$coefficients <- model2$par
model2.lm$fitted.values <- model2$par["const"] + model2$par["beta"]*df$x
model2.lm$residuals <- df$y - model2.lm$fitted.values
stargazer(model2.lm, se = list(model2.coefs$se), summary=FALSE, type='text')
# ===============================================
# Dependent variable:
# ---------------------------
# y
# -----------------------------------------------
# const 10.127***
# (0.680)
#
# beta 1.995***
# (0.024)
#
# scale 3.836***
# (0.393)
#
# degrees.freedom 3.682***
# (1.187)
#
# -----------------------------------------------
# Observations 200
# R2 0.965
# Adjusted R2 0.858
# Residual Std. Error 75.581 (df = 1)
# F Statistic 9.076 (df = 3; 1)
# ===============================================
# Note: *p<0.1; **p<0.05; ***p<0.01
(然后当然要确保剩余的摘要统计数据是正确的)
答案 2 :(得分:0)
我不知道你是如何使用stargazer,但你可以尝试使用扫帚和xtable包,问题是它不会给你优化模型的标准错误
library(broom)
library(xtable)
xtable(tidy(model1))
xtable(tidy(model2))