假设我的响应变量随着时间的推移而上升和下降。每当响应变量超过阈值时,我们就会有一个新的“试验”。也就是说,如果我在高于特定值时添加Threshold
列TRUE
,则Threshold
为TRUE
的连续数据点块构成新的审判。
Time <- seq(1, 10, by = 0.5)
Response <- abs(sin(Time))
Threshold <- Response > 0.6
data <- data.frame(Time, Response, Threshold)
鉴于Time
,Response
和Threshold
,如何添加Trial
因素,为每组TRUE
添加新值门槛?像这样:
Time Response Threshold Trial
1 1.0 0.84147098 TRUE A
2 1.5 0.99749499 TRUE A
3 2.0 0.90929743 TRUE A
4 2.5 0.59847214 FALSE NA
5 3.0 0.14112001 FALSE NA
6 3.5 0.35078323 FALSE NA
7 4.0 0.75680250 TRUE B
8 4.5 0.97753012 TRUE B
9 5.0 0.95892427 TRUE B
10 5.5 0.70554033 TRUE B
11 6.0 0.27941550 FALSE NA
12 6.5 0.21511999 FALSE NA
13 7.0 0.65698660 TRUE C
14 7.5 0.93799998 TRUE C
15 8.0 0.98935825 TRUE C
16 8.5 0.79848711 TRUE C
17 9.0 0.41211849 FALSE NA
18 9.5 0.07515112 FALSE NA
19 10.0 0.54402111 FALSE NA
答案 0 :(得分:3)
data$Trial <- factor(
ifelse(data$Threshold, cumsum(!data$Threshold), NA), labels = c("A", "B", "C")
)
## Time Response Threshold Trial
## 1 1.0 0.84147098 TRUE A
## 2 1.5 0.99749499 TRUE A
## 3 2.0 0.90929743 TRUE A
## 4 2.5 0.59847214 FALSE <NA>
## 5 3.0 0.14112001 FALSE <NA>
## 6 3.5 0.35078323 FALSE <NA>
## 7 4.0 0.75680250 TRUE B
## 8 4.5 0.97753012 TRUE B
## 9 5.0 0.95892427 TRUE B
## 10 5.5 0.70554033 TRUE B
## 11 6.0 0.27941550 FALSE <NA>
## 12 6.5 0.21511999 FALSE <NA>
## 13 7.0 0.65698660 TRUE C
## 14 7.5 0.93799998 TRUE C
## 15 8.0 0.98935825 TRUE C
## 16 8.5 0.79848711 TRUE C
## 17 9.0 0.41211849 FALSE <NA>
## 18 9.5 0.07515112 FALSE <NA>
## 19 10.0 0.54402111 FALSE <NA>
答案 1 :(得分:2)
使用rle
的另一种可能性:
r <- with(data, rle(Threshold))
len <- with(r, lengths[values])
n <- length(len)
trial <- rep(x = LETTERS[1:n], times = len)
data$Trial[data$Threshold] <- trial
data