我有一个大图,大约有4M个节点。该图由两个文件组成,一个包含节点名称,另一个包含边(每行代表一条边)。我想统一对图节点进行采样,并提出一个大至整个图形的15%的样本。考虑到图形的大小,生成这样的样本的最佳(或可能)方法是什么?
答案 0 :(得分:0)
使用此java代码随机选择15%的顶点:
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class RandomSample {
public static class Map extends Mapper<LongWritable, Text, Text, Text> {
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
if (Math.random()<0.15)
context.write(value,null);
else
context.write(null,null);
context.write(value,null);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "randomsample");
job.setJarByClass(RandomSample.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setNumReduceTasks(0);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
并使用此bash脚本运行它
echo "Running Job"
hadoop jar RandomSample.jar RandomSample $1 tmp
echo "copying result to local path (RandomSample)"
hadoop fs -getmerge tmp RandomSample
echo "Clean up"
hadoop fs -rmr tmp
例如,如果我们将脚本命名为random_sample.sh,要从文件夹/ example /中选择15%,只需运行
./random_sample.sh /example/
然后,您可以对第二个文件使用简单的grep
操作来仅选择包含随机选择的顶点的边