我无法在网上找到答案的简单问题。在可变参数宏中,如何查找参数的数量?如果它有解决方案,我可以使用boost预处理器。
如果它有所不同,我试图转换可变数量的宏参数来增强预处理器序列,列表或数组以进行进一步的重新处理。
答案 0 :(得分:88)
我通常使用这个宏来查找一些参数:
#define NUMARGS(...) (sizeof((int[]){__VA_ARGS__})/sizeof(int))
完整示例:
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#define NUMARGS(...) (sizeof((int[]){__VA_ARGS__})/sizeof(int))
#define SUM(...) (sum(NUMARGS(__VA_ARGS__), __VA_ARGS__))
void sum(int numargs, ...);
int main(int argc, char *argv[]) {
SUM(1);
SUM(1, 2);
SUM(1, 2, 3);
SUM(1, 2, 3, 4);
return 1;
}
void sum(int numargs, ...) {
int total = 0;
va_list ap;
printf("sum() called with %d params:", numargs);
va_start(ap, numargs);
while (numargs--)
total += va_arg(ap, int);
va_end(ap);
printf(" %d\n", total);
return;
}
这是完全有效的C99代码。但它有一个缺点 - 你不能在没有参数的情况下调用宏SUM()
,但是GCC有一个解决方案 - 见here。
因此,对于GCC,您需要定义这样的宏:
#define NUMARGS(...) (sizeof((int[]){0, ##__VA_ARGS__})/sizeof(int)-1)
#define SUM(...) sum(NUMARGS(__VA_ARGS__), ##__VA_ARGS__)
即使使用空参数列表
也能正常工作答案 1 :(得分:69)
这实际上是编译器相关的,并且不受任何标准的支持。
但是,您可以使用macro implementation进行计数:
#define PP_NARG(...) \
PP_NARG_(__VA_ARGS__,PP_RSEQ_N())
#define PP_NARG_(...) \
PP_ARG_N(__VA_ARGS__)
#define PP_ARG_N( \
_1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
_11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
_21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
_31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
_41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
_51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
_61,_62,_63,N,...) N
#define PP_RSEQ_N() \
63,62,61,60, \
59,58,57,56,55,54,53,52,51,50, \
49,48,47,46,45,44,43,42,41,40, \
39,38,37,36,35,34,33,32,31,30, \
29,28,27,26,25,24,23,22,21,20, \
19,18,17,16,15,14,13,12,11,10, \
9,8,7,6,5,4,3,2,1,0
/* Some test cases */
PP_NARG(A) -> 1
PP_NARG(A,B) -> 2
PP_NARG(A,B,C) -> 3
PP_NARG(A,B,C,D) -> 4
PP_NARG(A,B,C,D,E) -> 5
PP_NARG(1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3) -> 63
答案 2 :(得分:25)
如果您使用的是C ++ 11,并且需要将该值作为C ++编译时常量,那么这是一个非常优雅的解决方案:
#include <tuple>
#define MACRO(...) \
std::cout << "num args: " \
<< std::tuple_size<decltype(std::make_tuple(__VA_ARGS__))>::value \
<< std::endl;
请注意:计数完全在编译时发生,并且只要需要编译时整数,就可以使用该值,例如作为std :: array的模板参数。
答案 3 :(得分:13)
为方便起见,这里有一个适用于0到70个参数的实现,并且可以在Visual Studio GCC, and Clang中使用。我相信它将在Visual Studio 2010及更高版本中运行,但仅在VS2013中进行了测试。
#ifdef _MSC_VER // Microsoft compilers
# define GET_ARG_COUNT(...) INTERNAL_EXPAND_ARGS_PRIVATE(INTERNAL_ARGS_AUGMENTER(__VA_ARGS__))
# define INTERNAL_ARGS_AUGMENTER(...) unused, __VA_ARGS__
# define INTERNAL_EXPAND(x) x
# define INTERNAL_EXPAND_ARGS_PRIVATE(...) INTERNAL_EXPAND(INTERNAL_GET_ARG_COUNT_PRIVATE(__VA_ARGS__, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
# define INTERNAL_GET_ARG_COUNT_PRIVATE(_1_, _2_, _3_, _4_, _5_, _6_, _7_, _8_, _9_, _10_, _11_, _12_, _13_, _14_, _15_, _16_, _17_, _18_, _19_, _20_, _21_, _22_, _23_, _24_, _25_, _26_, _27_, _28_, _29_, _30_, _31_, _32_, _33_, _34_, _35_, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, _61, _62, _63, _64, _65, _66, _67, _68, _69, _70, count, ...) count
#else // Non-Microsoft compilers
# define GET_ARG_COUNT(...) INTERNAL_GET_ARG_COUNT_PRIVATE(0, ## __VA_ARGS__, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
# define INTERNAL_GET_ARG_COUNT_PRIVATE(_0, _1_, _2_, _3_, _4_, _5_, _6_, _7_, _8_, _9_, _10_, _11_, _12_, _13_, _14_, _15_, _16_, _17_, _18_, _19_, _20_, _21_, _22_, _23_, _24_, _25_, _26_, _27_, _28_, _29_, _30_, _31_, _32_, _33_, _34_, _35_, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, _61, _62, _63, _64, _65, _66, _67, _68, _69, _70, count, ...) count
#endif
static_assert(GET_ARG_COUNT() == 0, "GET_ARG_COUNT() failed for 0 arguments");
static_assert(GET_ARG_COUNT(1) == 1, "GET_ARG_COUNT() failed for 1 argument");
static_assert(GET_ARG_COUNT(1,2) == 2, "GET_ARG_COUNT() failed for 2 arguments");
static_assert(GET_ARG_COUNT(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70) == 70, "GET_ARG_COUNT() failed for 70 arguments");
答案 4 :(得分:6)
使用msvc扩展名:
#define Y_TUPLE_SIZE(...) Y_TUPLE_SIZE_II((Y_TUPLE_SIZE_PREFIX_ ## __VA_ARGS__ ## _Y_TUPLE_SIZE_POSTFIX,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0))
#define Y_TUPLE_SIZE_II(__args) Y_TUPLE_SIZE_I __args
#define Y_TUPLE_SIZE_PREFIX__Y_TUPLE_SIZE_POSTFIX ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0
#define Y_TUPLE_SIZE_I(__p0,__p1,__p2,__p3,__p4,__p5,__p6,__p7,__p8,__p9,__p10,__p11,__p12,__p13,__p14,__p15,__p16,__p17,__p18,__p19,__p20,__p21,__p22,__p23,__p24,__p25,__p26,__p27,__p28,__p29,__p30,__p31,__n,...) __n
适用于0 - 32个参数。这个限制可以很容易地扩展。
答案 5 :(得分:6)
有一些C ++ 11解决方案可以在编译时查找参数的数量,但我很惊讶地看到没有人提出任何如此简单的建议:
#define VA_COUNT(...) detail::va_count(__VA_ARGS__)
namespace detail
{
template<typename ...Args>
constexpr std::size_t va_count(Args&&...) { return sizeof...(Args); }
}
这并不需要包含<tuple>
标题。
答案 6 :(得分:5)
这与gcc / llvm的0参数一起使用。 [链接很愚蠢]
/*
* we need a comma at the start for ##_VA_ARGS__ to consume then
* the arguments are pushed out in such a way that 'cnt' ends up with
* the right count.
*/
#define COUNT_ARGS(...) COUNT_ARGS_(,##__VA_ARGS__,6,5,4,3,2,1,0)
#define COUNT_ARGS_(z,a,b,c,d,e,f,cnt,...) cnt
#define C_ASSERT(test) \
switch(0) {\
case 0:\
case test:;\
}
int main() {
C_ASSERT(0 == COUNT_ARGS());
C_ASSERT(1 == COUNT_ARGS(a));
C_ASSERT(2 == COUNT_ARGS(a,b));
C_ASSERT(3 == COUNT_ARGS(a,b,c));
C_ASSERT(4 == COUNT_ARGS(a,b,c,d));
C_ASSERT(5 == COUNT_ARGS(a,b,c,d,e));
C_ASSERT(6 == COUNT_ARGS(a,b,c,d,e,f));
return 0;
}
Visual Studio似乎忽略了用于使用空参数的##运算符。你可以用
之类的东西解决这个问题#define CNT_ COUNT_ARGS
#define PASTE(x,y) PASTE_(x,y)
#define PASTE_(x,y) x ## y
#define CNT(...) PASTE(ARGVS,PASTE(CNT_(__VA_ARGS__),CNT_(1,##__VA_ARGS__)))
//you know its 0 if its 11 or 01
#define ARGVS11 0
#define ARGVS01 0
#define ARGVS12 1
#define ARGVS23 2
#define ARGVS34 3
答案 7 :(得分:2)
这里是计算 VA_ARGS 的0个或多个参数的简单方法,我的例子假定最多有5个变量,但如果需要,可以添加更多。
#define VA_ARGS_NUM_PRIV(P1, P2, P3, P4, P5, P6, Pn, ...) Pn
#define VA_ARGS_NUM(...) VA_ARGS_NUM_PRIV(-1, ##__VA_ARGS__, 5, 4, 3, 2, 1, 0)
VA_ARGS_NUM() ==> 0
VA_ARGS_NUM(19) ==> 1
VA_ARGS_NUM(9, 10) ==> 2
...
答案 8 :(得分:2)
我假设 VA_ARGS 的每个参数都将以逗号分隔。如果是这样,我认为这应该是一种非常干净的方法。
try{
BufferedReader reader = new BufferedReader(new FileReader(filepath));
json = "";
StringBuilder sb = new StringBuilder();
String line;
while ((line = reader.readLine()) != null ) {
if (line.contains("Solyc02g065040")){
sb.append(line);
sb.append("\n");
System.out.println(sb);
}
else{
//do nothing
}
}
json = sb.toString();
System.out.println(json);
reader.close();
String [] gffArray = json.split("\n");
System.out.println(gffArray);
JSONArray jsArray = new JSONArray();
for (int i = 0; i < gffArray.length; i++) {
jsArray.put(gffArray[i]);
}
System.out.println(jsArray);
为我工作了clang 4和GCC 5.1的Godbolt。这将在编译时进行计算,但不会评估预处理器。因此,如果您尝试做类似制作FOR_EACH的操作,则此操作将无效。
答案 9 :(得分:0)
您可以对字符串进行字符串化和计数:
int countArgs(char *args)
{
int result = 0;
int i = 0;
while(isspace(args[i])) ++i;
if(args[i]) ++result;
while(args[i]) {
if(args[i]==',') ++result;
else if(args[i]=='\'') i+=2;
else if(args[i]=='\"') {
while(args[i]) {
if(args[i+1]=='\"' && args[i]!='\\') {
++i;
break;
}
++i;
}
}
++i;
}
return result;
}
#define MACRO(...) \
{ \
int count = countArgs(#__VA_ARGS__); \
printf("NUM ARGS: %d\n",count); \
}
答案 10 :(得分:0)
Boost预处理器实际上在Boost 1.49上具有BOOST_PP_VARIADIC_SIZE(...)
。它的最大尺寸为64。
内幕下,它与Kornel Kisielewicz's answer基本相同。
答案 11 :(得分:0)
我发现这里的答案仍然不完整。
我在这里找到的最接近的可移植实现是: C++ preprocessor __VA_ARGS__ number of arguments
但是在没有至少-std=gnu++11
命令行参数的情况下,它不适用于GCC中的零参数。
因此,我决定将此解决方案与之合并: https://gustedt.wordpress.com/2010/06/08/detect-empty-macro-arguments/
#define UTILITY_PP_CONCAT_(v1, v2) v1 ## v2
#define UTILITY_PP_CONCAT(v1, v2) UTILITY_PP_CONCAT_(v1, v2)
#define UTILITY_PP_CONCAT5_(_0, _1, _2, _3, _4) _0 ## _1 ## _2 ## _3 ## _4
#define UTILITY_PP_IDENTITY_(x) x
#define UTILITY_PP_IDENTITY(x) UTILITY_PP_IDENTITY_(x)
#define UTILITY_PP_VA_ARGS_(...) __VA_ARGS__
#define UTILITY_PP_VA_ARGS(...) UTILITY_PP_VA_ARGS_(__VA_ARGS__)
#define UTILITY_PP_IDENTITY_VA_ARGS_(x, ...) x, __VA_ARGS__
#define UTILITY_PP_IDENTITY_VA_ARGS(x, ...) UTILITY_PP_IDENTITY_VA_ARGS_(x, __VA_ARGS__)
#define UTILITY_PP_IIF_0(x, ...) __VA_ARGS__
#define UTILITY_PP_IIF_1(x, ...) x
#define UTILITY_PP_IIF(c) UTILITY_PP_CONCAT_(UTILITY_PP_IIF_, c)
#define UTILITY_PP_HAS_COMMA(...) UTILITY_PP_IDENTITY(UTILITY_PP_VA_ARGS_TAIL(__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0))
#define UTILITY_PP_IS_EMPTY_TRIGGER_PARENTHESIS_(...) ,
#define UTILITY_PP_IS_EMPTY(...) UTILITY_PP_IS_EMPTY_( \
/* test if there is just one argument, eventually an empty one */ \
UTILITY_PP_HAS_COMMA(__VA_ARGS__), \
/* test if _TRIGGER_PARENTHESIS_ together with the argument adds a comma */ \
UTILITY_PP_HAS_COMMA(UTILITY_PP_IS_EMPTY_TRIGGER_PARENTHESIS_ __VA_ARGS__), \
/* test if the argument together with a parenthesis adds a comma */ \
UTILITY_PP_HAS_COMMA(__VA_ARGS__ ()), \
/* test if placing it between _TRIGGER_PARENTHESIS_ and the parenthesis adds a comma */ \
UTILITY_PP_HAS_COMMA(UTILITY_PP_IS_EMPTY_TRIGGER_PARENTHESIS_ __VA_ARGS__ ()))
#define UTILITY_PP_IS_EMPTY_(_0, _1, _2, _3) UTILITY_PP_HAS_COMMA(UTILITY_PP_CONCAT5_(UTILITY_PP_IS_EMPTY_IS_EMPTY_CASE_, _0, _1, _2, _3))
#define UTILITY_PP_IS_EMPTY_IS_EMPTY_CASE_0001 ,
#define UTILITY_PP_VA_ARGS_SIZE(...) UTILITY_PP_IIF(UTILITY_PP_IS_EMPTY(__VA_ARGS__))(0, UTILITY_PP_VA_ARGS_SIZE_(__VA_ARGS__, UTILITY_PP_VA_ARGS_SEQ64()))
#define UTILITY_PP_VA_ARGS_SIZE_(...) UTILITY_PP_IDENTITY(UTILITY_PP_VA_ARGS_TAIL(__VA_ARGS__))
#define UTILITY_PP_VA_ARGS_TAIL(_0,_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14, x, ...) x
#define UTILITY_PP_VA_ARGS_SEQ64() 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
#define EATER0(...)
#define EATER1(...) ,
#define EATER2(...) (/*empty*/)
#define EATER3(...) (/*empty*/),
#define EATER4(...) EATER1
#define EATER5(...) EATER2
#define MAC0() ()
#define MAC1(x) ()
#define MACV(...) ()
#define MAC2(x,y) whatever
static_assert(UTILITY_PP_VA_ARGS_SIZE() == 0, "1");
static_assert(UTILITY_PP_VA_ARGS_SIZE(/*comment*/) == 0, "2");
static_assert(UTILITY_PP_VA_ARGS_SIZE(a) == 1, "3");
static_assert(UTILITY_PP_VA_ARGS_SIZE(a, b) == 2, "4");
static_assert(UTILITY_PP_VA_ARGS_SIZE(a, b, c) == 3, "5");
static_assert(UTILITY_PP_VA_ARGS_SIZE(a, b, c, d) == 4, "6");
static_assert(UTILITY_PP_VA_ARGS_SIZE(a, b, c, d, e) == 5, "7");
static_assert(UTILITY_PP_VA_ARGS_SIZE((void)) == 1, "8");
static_assert(UTILITY_PP_VA_ARGS_SIZE((void), b, c, d) == 4, "9");
static_assert(UTILITY_PP_VA_ARGS_SIZE(UTILITY_PP_IS_EMPTY_TRIGGER_PARENTHESIS_) == 1, "10");
static_assert(UTILITY_PP_VA_ARGS_SIZE(EATER0) == 1, "11");
static_assert(UTILITY_PP_VA_ARGS_SIZE(EATER1) == 1, "12");
static_assert(UTILITY_PP_VA_ARGS_SIZE(EATER2) == 1, "13");
static_assert(UTILITY_PP_VA_ARGS_SIZE(EATER3) == 1, "14");
static_assert(UTILITY_PP_VA_ARGS_SIZE(EATER4) == 1, "15");
static_assert(UTILITY_PP_VA_ARGS_SIZE(MAC0) == 1, "16");
// a warning in msvc
static_assert(UTILITY_PP_VA_ARGS_SIZE(MAC1) == 1, "17");
static_assert(UTILITY_PP_VA_ARGS_SIZE(MACV) == 1, "18");
// This one will fail because MAC2 is not called correctly
//static_assert(UTILITY_PP_VA_ARGS_SIZE(MAC2) == 1, "19");
c++11
,msvc 2015
,gcc 4.7.1
,clang 3.0