我有一个包含两个包含字符串的列的DataFrame,例如:
col1 --- col2
恩斯特---吉姆 彼得---恩斯特 比尔--- NaN
NaN ---道格
吉姆---杰克
现在我想在第一列和第二列中创建一个包含唯一字符串列表的新DataFrame,这两个原始列中每个字符串的出现次数如下:
str --- 出现
恩斯特--- 2
彼得--- 1 比尔--- 1 吉姆--- 2 杰克--- 1 道格--- 1
如何以最有效的方式实现这一目标?谢谢!
答案 0 :(得分:6)
首先将原来的两列合并为一列:
In [127]: s = pd.concat([df.col1, df.col2], ignore_index=True)
In [128]: s
Out[128]:
0 Ernst
1 Peter
2 Bill
3 NaN
4 Jim
5 Jim
6 Ernst
7 NaN
8 Doug
9 Jake
dtype: object
然后使用value_counts
:
In [129]: s.value_counts()
Out[129]:
Ernst 2
Jim 2
Bill 1
Doug 1
Jake 1
Peter 1
dtype: int64
答案 1 :(得分:0)
我会这样做(假设您从文件your_file.txt
获取数据并且想要打印出结果):
from collections import Counter;
separator = ' --- '
with open('your_file.txt') as f:
content = f.readlines() # here you got a list of elements corresponding to the lines
people = separator.join(content).split(separator) # here you got a list of all elements
people_count = Counter(people) # you got here a dict-like object with key=name value=count
for name, val in people_count.iteritems():
# print the column the way you want
print '{name}{separator}{value}'.format(name=name, separator=separator, value=val)
该示例使用Counter对象,该对象允许您从迭代中有效地计算元素。其余的代码只是字符串操作。
答案 2 :(得分:0)
试试这个:
df = pd.DataFrame({"col1" : ["Ernst", "Peter","Bill",np.nan,"Jim"],
"col2" : ["Jim","Ernst",np.nan,"Doug","Jake"]})
print df
df1 = df.groupby("col1")["col1"].count()
df2 = df.groupby("col2")["col2"].count()
print df1.add(df2,fill_value=0)