真的很感谢这段代码的一些帮助。我一直在努力创建自己的还原内核,我知道它们已经存在,所以这只是为了我自己的利益。我做了最大缩减,但是当我修改它以计算总和时,我得到了不同的结果。 cuda-memcheck给了我一个10兆字节的文件,里面充满了错误和警告,所以我认为我有一个竞争条件,我只是看不到。这是代码段。
#include <cuda.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <iostream>
#include <fstream>
#include <iomanip> //display 2 decimal places
#include <math.h>
#include <ctime> //For timers
using namespace std;
#define NUMBLOCKSPERGRID 1 //Universal number of blocks per grid to use.
#define NUMTHREADSPERBLOCK 256 //Universal number of threads per block.
#define MAXLENGTH NUMTHREADSPERBLOCK*NUMBLOCKSPERGRID //Use multiple of 256
#define NUMPOINTS 256 //Number of timesteps to integrate.
double concStorage[NUMPOINTS][MAXLENGTH] = {}; //Stores concs [rows] vs. time [columns]
__device__ __constant__ int numThreads = NUMTHREADSPERBLOCK; //Number of threads per block
__device__ __constant__ int numBlocks = NUMBLOCKSPERGRID; //Number of blocks per grid
__device__ __constant__ int maxlength = MAXLENGTH; //The largest polymer species we track.
//Temporary device arrays to use during integration. Will not send back data.
__device__ double temp4[MAXLENGTH];
__global__ void rkf5(size_t, double*, double*, double*, double*);
__device__ void arrSum2(double*, double*);
__global__ void arrSumKernel(double*, double*, int);
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
//Error checking
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
__global__ void arrInit(double* a, double b)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
a[idx]=b;
}
__global__ void rkf5(size_t pitch, double* concStorage, double* concs, double* dt, double* d_ts)
{
arrInit<<< numBlocks, numThreads >>>(temp4, 1); //works
cudaDeviceSynchronize();
double p = 0;
arrSum2(temp4, &p);
cudaDeviceSynchronize();
arrInit<<< numBlocks, numThreads >>>(d_ts, p);
cudaDeviceSynchronize();
}
__device__ void arrSum2(double* arr, double* sumVal )
{
/*
Description : Sums all elements of array.
Status : Untested.
*/
int maxThreads = 1024; //This can be reduced, but this is a max. Make reducible for optimization.
int blocks = int(maxlength/maxThreads)+1; //works
double* kernelSums= new double[blocks];
double* blockSums= new double[1];
arrInit<<< 1, blocks >>>(kernelSums, 0); //works
arrInit<<< 1, 1 >>>(blockSums, 0); //works
cudaDeviceSynchronize();
arrSumKernel<<< blocks, maxThreads, maxThreads*sizeof(double) >>>(arr, kernelSums, maxlength);
cudaDeviceSynchronize();
arrSumKernel<<< 1, blocks, blocks*sizeof(double) >>>(kernelSums, blockSums, blocks);
cudaDeviceSynchronize();
*sumVal = blockSums[0];
}
__global__ void arrSumKernel(double* arr, double* sums, int length)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
extern __shared__ double blockMemory[];
//This component will move the global array component to shared memory if its index < length, else pad with 0.
if (idx < length)
blockMemory[threadIdx.x] = arr[idx];
else
blockMemory[threadIdx.x] = 0;
__syncthreads();
int stage = 0;
int maxStage = static_cast<int>(logf(blockDim.x)/logf(2)); //logf needed for CUDA
while (stage <= maxStage)
{
int left = threadIdx.x;
int right = (threadIdx.x) + powf(2, (stage)); //idx+1 if idx is even, 0 if odd
if (( right < blockDim.x ) && ( left % int(powf(2, stage)) == 0 ))
blockMemory[left] += blockMemory[right]; //Move larger value left.
stage++;
__syncthreads();
}
sums[blockIdx.x] = blockMemory[0];
__syncthreads();
}
int main(int argc, char** argv)
{
//Main program.
cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte);
cudaSetDevice(0);
std::cout << std::fixed; //Displays 2 decimal places.
std::cout << std::setprecision(16); //Displays 2 decimal places.
const int numpoints = NUMPOINTS; //Number of timesteps to take.
const int maxlength = MAXLENGTH; //Number of discrete concentrations we are tracking.
double mo = 5E-6; //Initial concentration in M.
double to = 0; //Beginning integration time in seconds.
double tf = 7200; //Final integration time in seconds.
double dt = (tf-to)/static_cast<double>(numpoints); //Static step size in seconds.
double concs[maxlength] = {}; //Meant to store the initial concentrations .
double ts[numpoints]= {}; //Can hold all the times at which concentrations are stored.
//Initialize all the arrays on the host to ensure arrays of 0's are sent to the device.
//Also, here is where we can seed the system.
std::cout<<dt;
std::cout<<"\n";
concs[0]=mo;
std::cout<<concs[0];
std::cout<<" ";
concs[0]=mo;
std::cout<<"\n";
//Define all the pointers to device array memory addresses. These contain the on-GPU
//addresses of all the data we're generating/using.
double *d_concStorage; //On GPU 2D array that stores all the concentrations and associated times.
double *d_concs; //The concentrations for a specific timestep.
double *d_dt; //The length of the timestep.
double *d_ts;
//Calculate all the sizes of the arrays in order to allocate the proper amount of memory on the GPU.
size_t size_concs = sizeof(concs);
size_t size_dt = sizeof(dt);
size_t size_ts = sizeof(ts);
size_t h_pitch = maxlength*sizeof(double);
size_t d_pitch;
//Calculate the "pitch" of the 2D array. The pitch is basically the length of a 2D array's row. IT's larger
//than the actual row full of data due to hadware issues. We thusly will use the pitch instead of the data
//size to traverse the array.
gpuErrchk(cudaMallocPitch( (void**)&d_concStorage, &d_pitch, maxlength * sizeof(double), numpoints));
//Allocate memory on the GPU for all the arrrays we're going to use in the integrator.
gpuErrchk(cudaMalloc((void**)&d_concs, size_concs));
gpuErrchk(cudaMalloc((void**)&d_dt, size_dt));
gpuErrchk(cudaMalloc((void**)&d_ts, size_ts));
//Copy all initial values of arrays to GPU.
gpuErrchk(cudaMemcpy2D(d_concStorage, d_pitch, concStorage, h_pitch, maxlength*sizeof(double), numpoints, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_concs, &concs, size_concs, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_dt, &dt, size_dt, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_ts, &ts, size_ts, cudaMemcpyHostToDevice));
//Run the integrator.
std::clock_t start;
double duration;
start = std::clock();
rkf5<<<1,1>>>(d_pitch, d_concStorage, d_concs, d_dt, d_ts);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
duration = (std::clock() - start)/ (double) CLOCKS_PER_SEC;
std::cout<<"printf: "<< duration <<'\n';
//Copy 2D array of concentrations vs. time from GPU to Host.
gpuErrchk( cudaMemcpy2D(concStorage, h_pitch, d_concStorage, d_pitch, maxlength*sizeof(double), numpoints, cudaMemcpyDeviceToHost) );
gpuErrchk( cudaMemcpy(&ts, d_ts, size_ts, cudaMemcpyDeviceToHost));
cudaDeviceSynchronize();
for (int i=0; i < maxlength; i++)
{
std::cout << " ";
std::cout << ts[0];
}
cudaDeviceReset(); //Clean up all memory.
return 0;
}
导致这些船载:
========= CUDA-MEMCHECK
========= ERROR: Potential RAW hazard detected at __shared__ 0x1007 in block (0, 0, 0) :
========= Write Thread (512, 0, 0) at 0x000030c8 in C:/Users/Karsten Chu/New Google Drive/Research/Visual Studio 2012/Projects/Dynamic Parallelism Test/Dynamic Parallelism Test/arrayFunctions.cu:209:arrSumKernel(double*, double*, int)
========= Read Thread (0, 0, 0) at 0x00003038 in C:/Users/Karsten Chu/New Google Drive/Research/Visual Studio 2012/Projects/Dynamic Parallelism Test/Dynamic Parallelism Test/arrayFunctions.cu:209:arrSumKernel(double*, double*, int)
========= Current Value : 0
=========
========= ERROR: Potential RAW hazard detected at __shared__ 0x1006 in block (0, 0, 0) :
========= Write Thread (512, 0, 0) at 0x000030c8 in C:/Users/Karsten Chu/New Google Drive/Research/Visual Studio 2012/Projects/Dynamic Parallelism Test/Dynamic Parallelism Test/arrayFunctions.cu:209:arrSumKernel(double*, double*, int)
========= Read Thread (0, 0, 0) at 0x00003038 in C:/Users/Karsten Chu/New Google Drive/Research/Visual Studio 2012/Projects/Dynamic Parallelism Test/Dynamic Parallelism Test/arrayFunctions.cu:209:arrSumKernel(double*, double*, int)
========= Current Value : 0
奇怪的是,如果我通过cuda-memcheck --tools racecheck运行它,给出这些参数的结果应该给我“256”是正确的。如果我只是运行应用程序,结果会有所不同。
答案 0 :(得分:3)
我如何在这里制造RAW危险?
让我们来看看这个循环:
int stage = 0;
int maxStage = static_cast<int>(logf(blockDim.x)/logf(2)); //logf needed for CUDA
while (stage <= maxStage)
{
int left = threadIdx.x;
int right = (threadIdx.x) + powf(2, (stage)); //idx+1 if idx is even, 0 if odd
if (( right < blockDim.x ) && ( left % int(powf(2, stage)) == 0 ))
blockMemory[left] += blockMemory[right]; //Move larger value left.
stage++;
__syncthreads();
}
sums[blockIdx.x] = blockMemory[0];
在第一次通过while
循环时,stage
= 0. left
= threadIdx.x
和right
= threadIdx.x + 1
。所有线程,但最后一个线程通过条件if
测试的第一部分:(right < blockDim.x
)和所有线程通过测试的第二部分:({{1} }),因为任何整数%1 == 0。
因此,这行代码:
left % int(powf(2, stage)) == 0
执行块中的每个线程(最后一个除外)。但这不正确,因为现在结果将取决于warp执行的顺序(如果warp 1执行在warp 0之前,warp 0 thread 31的结果将不同于warp 0在warp 1)之前执行的结果,这将构成竞争条件或RAW危险。
如果我按如下方式修改条件测试:
blockMemory[left] += blockMemory[right];
然后我得到一致的可重复结果(256)。
我不是说代码在那时没有错误,但我认为这应该指向你修复它的方向。这不是我如何做parallel reduction。当然,应该避免使用超越性( if (( right < blockDim.x ) && ( left % int(powf(2, stage+1)) == 0 ))
,powf
)来表现,对于2的权力来说这并不难。