更快的方式同时迭代两个或更多Numpy阵列的滚动窗口?

时间:2014-01-18 12:38:49

标签: python-3.x numpy itertools

我有两个numpy数组x和y。 e.g。

x
Out[1]: 
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19])
y
Out[1]: 
array([100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
       113, 114, 115, 116, 117, 118, 119])

我想在x和y上同时迭代n期滚动窗口。

我想尽快做到这一点,同时将滚动窗口保持为numpy数组。我无耻地从itertools文档中窃取了一些代码。然后制作了我自己的版本,仅在np.array上运行。但我想知道这里是否有人可以帮助我更快地完成我的功能?

我的源代码是:

from itertools import islice
import numpy as np

import time
class Timer( object ):

    def __init__(self):
        pass

    def __enter__(self):
        self.start = time.time()
        return self        

    def __exit__(self,a,b,c):
        print('ending')
        self.end = time.time()
        self.timetaken = self.end-self.start
        print( 'Took {0} seconds'.format( self.timetaken ))

def window(seq, n=2):
    "Returns a sliding window (of width n) over data from the iterable"
    "   s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...                   "
    it     = iter(seq)
    result = list(islice(it, n))
    if len(result) == n:
        yield np.array( result ).T    
    for elem in it:
        result = result[1:] + [elem,]        
        yield np.array( result ).T

def npwindow( seq, n=2):
    Zt      = Z.T    
    r = Zt[:n]    
    for zt in Zt[n:]:
        r = np.roll( r, shift=-1, axis=0 )
        r[-1] = zt
        yield r.T


n = 100
N = 1000

x       = np.arange(N)
y       = np.arange(100,N+100)

Z       = np.array( [x,y] )

def npwindow_test( Z,n ):
    window2 = npwindow( Z,n )
    for w in window2:    
        pass
        #print( 'npwindow: {0}'.format( w ) )

def window_test( Z, n ):
    window1 = window( zip(*Z),n )
    for w in window1:
        pass
        #print( 'window: {0}'.format( w ) )

num_iter = 10
with Timer() as t0:
    for i in range(num_iter):
        npwindow_test( Z, n )

with Timer() as t1:
    for i in range(num_iter):
        window_test( Z, n )

print( ' ratio : {0}'.format( t0.timetaken / t1.timetaken ) )

1 个答案:

答案 0 :(得分:3)

滚动窗口可以通过np.lib.stride_tricks.as_strided()

完成

参考链接:http://www.rigtorp.se/2011/01/01/rolling-statistics-numpy.html

以下是代码:

import numpy as np

n = 10
N = 20

x       = np.arange(N)
y       = np.arange(100,N+100)

Z       = np.vstack((x, y))

def rolling_window(a, window):
    shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
    strides = a.strides + (a.strides[-1],)
    return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)


rZ = rolling_window(Z, n)

然后你可以用rZ进行计算而不用循环。如果需要循环,请使用轴1进行循环:

for i in xrange(rZ.shape[1]):
    print rZ[:, i, :]

输出:

[[  0   1   2   3   4   5   6   7   8   9]
 [100 101 102 103 104 105 106 107 108 109]]
[[  1   2   3   4   5   6   7   8   9  10]
 [101 102 103 104 105 106 107 108 109 110]]
[[  2   3   4   5   6   7   8   9  10  11]
 [102 103 104 105 106 107 108 109 110 111]]
[[  3   4   5   6   7   8   9  10  11  12]
 [103 104 105 106 107 108 109 110 111 112]]
[[  4   5   6   7   8   9  10  11  12  13]
 [104 105 106 107 108 109 110 111 112 113]]
[[  5   6   7   8   9  10  11  12  13  14]
 [105 106 107 108 109 110 111 112 113 114]]
[[  6   7   8   9  10  11  12  13  14  15]
 [106 107 108 109 110 111 112 113 114 115]]
[[  7   8   9  10  11  12  13  14  15  16]
 [107 108 109 110 111 112 113 114 115 116]]
[[  8   9  10  11  12  13  14  15  16  17]
 [108 109 110 111 112 113 114 115 116 117]]
[[  9  10  11  12  13  14  15  16  17  18]
 [109 110 111 112 113 114 115 116 117 118]]
[[ 10  11  12  13  14  15  16  17  18  19]
 [110 111 112 113 114 115 116 117 118 119]]