我想编写Java代码来生成范围[1,4]中的随机整数数组。数组的长度为N,在运行时提供。问题是范围[1,4]不是均匀分布的:
这意味着如果我创建N = 100的数组,数字'1'将在数组中平均显示40次,数字'2'显示10次,依此类推。
目前我正在使用此代码在[1,4]范围内生成均匀分布的随机数:
public static void main(String[] args)
{
int N;
System.out.println();
System.out.print("Enter an integer number: ");
N = input.nextInt();
int[] a = new int[N];
Random generator = new Random();
for(int i = 0; i < a.length; i++)
{
a[i] = generator.nextInt(4)+1;
}
}
如何使用非均匀分布实现它,如上图所示?
答案 0 :(得分:8)
从代码开始,这是一种方法:
public static void main(String[] args){
int N;
System.out.println();
System.out.print("Enter an integer number: ");
N = input.nextInt();
int[] a = new int[N];
Random generator = new Random();
for (int i = 0; i < a.length; i++) {
float n = generator.nextFloat();
if (n <= 0.4) {
a[i] = 1;
} else if (n <= 0.7) {
a[i] = 3;
} else if (n <= 0.9) {
a[i] = 4;
} else {
a[i] = 2;
}
}
}
更新:在@pjs的建议中,按照清除概率的顺序选择数字,这样你就可以提前退出if块了
答案 1 :(得分:3)
另一个简单的解决方案是使用nextDouble(),它在[0,1)中生成一个随机双精度数。如果值是&lt; .4选择1,否则选择1。 (.4 + .2)选择2等,最后一个分支总是选择最后一个选项。这很容易使用for循环进行推广。
答案 2 :(得分:3)
对于更通用的方法,您可以使用分布概率填充NavigableMap
:
double[] probs = {0.4, 0.1, 0.2, 0.3};
NavigableMap<Double, Integer> distribution = new TreeMap<Double, Integer>();
for(double p : probs) {
distribution.put(distribution.isEmpty() ? p : distribution.lastKey() + p, distribution.size() + 1);
}
以后用[0,1&gt;:
范围内的均匀分布的随机密钥查询地图Random rnd = new Random();
for(int i=0; i<20; i++) {
System.out.println(distribution.ceilingEntry(rnd.nextDouble()).getValue());
}
这将使用以下键/值对填充地图:
0.4 -> 1
0.5 -> 2
0.7 -> 3
1.0 -> 4
要查询地图,首先要生成0到1范围内的均匀分布的双精度。使用ceilingEntry
方法查询地图并传递随机数将返回"mapping associated with the least key greater than or equal to the given key",例如传递范围&lt; 0.4,0.5]中的值将返回带有映射0.5 -> 2
的条目。因此,在返回的映射条目上使用getValue()
将返回2.
答案 3 :(得分:2)
让a1, a2, a3
和a4
成为指定相对概率的双精度数s = a1+a2+a3+a4
这意味着1
的概率为a1/s
,2
的概率为a2/s
,......
然后使用generator.nextDouble()
创建一个随机的双d。
如果0 <= d < a1/s
则整数应为1,
如果a1/s <= d < (a1+a2)/s
则整数应为2
如果(a1+a2)/s <= d < (a1+a2+a3)/s
则整数应为3
如果(a1+a2+a3)/s <= d < 1
则整数应为4
答案 4 :(得分:2)
一个稍微可扩展的Miquel版本(以及Teresa建议的):
double[] distro=new double[]{.4,.1,.3,.2};
int N;
System.out.println();
System.out.print("Enter an integer number: ");
Scanner input = new Scanner(System.in);
N = input.nextInt();
int[] a = new int[N];
Random generator = new Random();
outer:
for(int i = 0; i < a.length; i++)
{
double rand=generator.nextDouble();
double val=0;
for(int j=1;j<distro.length;j++){
val+=distro[j-1];
if(rand<val){
a[i]=j;
continue outer;
}
}
a[i]=distro.length;
}
答案 5 :(得分:2)
对于您上面提到的具体问题,其他人提供的解决方案效果很好,alias method会有点矫枉过正。但是,您在评论中说,您实际上将在具有更大范围的分布中使用它。在这种情况下,设置别名表的开销可能值得获得实际生成值的O(1)行为。
这是Java的源代码。如果你不想抓住Mersenne Twister,很容易将它还原为使用Java的股票Random
:
/*
* Created on Mar 12, 2007
* Feb 13, 2011: Updated to use Mersenne Twister - pjs
*/
package edu.nps.or.simutils;
import java.lang.IllegalArgumentException;
import java.text.DecimalFormat;
import java.util.Comparator;
import java.util.Stack;
import java.util.PriorityQueue;
import java.util.Random;
import net.goui.util.MTRandom;
public class AliasTable<V> {
private static Random r = new MTRandom();
private static DecimalFormat df2 = new DecimalFormat(" 0.00;-0.00");
private V[] primary;
private V[] alias;
private double[] primaryP;
private double[] primaryPgivenCol;
private static boolean notCloseEnough(double target, double value) {
return Math.abs(target - value) > 1E-10;
}
/**
* Constructs the AliasTable given the set of values
* and corresponding probabilities.
* @param value
* An array of the set of outcome values for the distribution.
* @param pOfValue
* An array of corresponding probabilities for each outcome.
* @throws IllegalArgumentException
* The values and probability arrays must be of the same length,
* the probabilities must all be positive, and they must sum to one.
*/
public AliasTable(V[] value, double[] pOfValue) {
super();
if (value.length != pOfValue.length) {
throw new IllegalArgumentException(
"Args to AliasTable must be vectors of the same length.");
}
double total = 0.0;
for (double d : pOfValue) {
if (d < 0) {
throw new
IllegalArgumentException("p_values must all be positive.");
}
total += d;
}
if (notCloseEnough(1.0, total)) {
throw new IllegalArgumentException("p_values must sum to 1.0");
}
// Done with the safety checks, now let's do the work...
// Cloning the values prevents people from changing outcomes
// after the fact.
primary = value.clone();
alias = value.clone();
primaryP = pOfValue.clone();
primaryPgivenCol = new double[primary.length];
for (int i = 0; i < primaryPgivenCol.length; ++i) {
primaryPgivenCol[i] = 1.0;
}
double equiProb = 1.0 / primary.length;
/*
* Internal classes are UGLY!!!!
* We're what you call experts. Don't try this at home!
*/
class pComparator implements Comparator<Integer> {
public int compare(Integer i1, Integer i2) {
return primaryP[i1] < primaryP[i2] ? -1 : 1;
}
}
PriorityQueue<Integer> deficitSet =
new PriorityQueue<Integer>(primary.length, new pComparator());
Stack<Integer> surplusSet = new Stack<Integer>();
// initial allocation of values to deficit/surplus sets
for (int i = 0; i < primary.length; ++i) {
if (notCloseEnough(equiProb, primaryP[i])) {
if (primaryP[i] < equiProb) {
deficitSet.add(i);
} else {
surplusSet.add(i);
}
}
}
/*
* Pull the largest deficit element from what remains. Grab as
* much probability as you need from a surplus element. Re-allocate
* the surplus element based on the amount of probability taken from
* it to the deficit, surplus, or completed set.
*
* Lather, rinse, repeat.
*/
while (!deficitSet.isEmpty()) {
int deficitColumn = deficitSet.poll();
int surplusColumn = surplusSet.pop();
primaryPgivenCol[deficitColumn] = primaryP[deficitColumn] / equiProb;
alias[deficitColumn] = primary[surplusColumn];
primaryP[surplusColumn] -= equiProb - primaryP[deficitColumn];
if (notCloseEnough(equiProb, primaryP[surplusColumn])) {
if (primaryP[surplusColumn] < equiProb) {
deficitSet.add(surplusColumn);
} else {
surplusSet.add(surplusColumn);
}
}
}
}
/**
* Generate a value from the input distribution. The alias table
* does this in O(1) time, regardless of the number of elements in
* the distribution.
* @return
* A value from the specified distribution.
*/
public V generate() {
int column = (int) (primary.length * r.nextDouble());
return r.nextDouble() <= primaryPgivenCol[column] ?
primary[column] : alias[column];
}
public void printAliasTable() {
System.err.println("Primary\t\tprimaryPgivenCol\tAlias");
for(int i = 0; i < primary.length; ++i) {
System.err.println(primary[i] + "\t\t\t"
+ df2.format(primaryPgivenCol[i]) + "\t\t" + alias[i]);
}
System.err.println();
}
}