我被要求为我的RSA加密算法创建512位整数类型。我从最简单的按位操作OR, AND, XOR, NOT
开始,然后使用提到的操作我实现了加法,减法等。
不幸的是,经过多次测试,超过128位的速度非常慢。
当我发现使用RSA生成的网站时,我很惊讶,它在几毫秒内使用明显的javascript生成密钥。如何改进算法以提高效率?或者更好的问题是:专业人士如何实施如此大的类型 这样的表现。
这是我的代码:
public class BigInt {
public static final int BYTE = 8;
public static final int DEFAULT_SIZE = 128;
public final static BigInt ZERO = new BigInt(0);
public final static BigInt ONE = new BigInt(1);
public final static BigInt TEN = new BigInt(10);
private boolean[] number;
private Endianness endianness = Endianness.BIG_ENDIAN;
public BigInt() {
number = new boolean[DEFAULT_SIZE];
}
public BigInt(boolean[] number) {
this.number = number;
}
public BigInt(int integerNumber) {
this();
boolean isNegative = false;
if (integerNumber < 0) {
isNegative = true;
integerNumber = Math.abs(integerNumber);
}
for (int i = number.length - 1; i >= 1 && integerNumber >= 1; i--) {
number[i] = integerNumber % 2 == 1;
integerNumber >>= 1;
}
if (isNegative) {
number = new BigInt(number).not().add(ONE).number;
}
}
public BigInt(String binaryString) throws InvalidBinaryStringException {
this();
for (int i = binaryString.length() - 1, j = number.length - 1;
i >= 0 && j >= 0; i--, j--) {
if (binaryString.charAt(i) != '1' && binaryString.charAt(i) != '0') {
throw new InvalidBinaryStringException(binaryString);
}
number[j] = (binaryString.charAt(i) - '0') == 1;
}
}
public BigInt(BigInt copy) {
this();
System.arraycopy(copy.number, 0, number, 0, copy.number.length);
}
public BigInt add(BigInt component) {
BigInt a, b;
BigInt x = new BigInt(this);
BigInt y = new BigInt(component);
do {
a = x.and(y);
b = x.xor(y);
x = a.shiftLeft(1);
y = b;
} while (!a.equals(ZERO));
return b;
}
public BigInt sub(BigInt subtrahend) {
return add(subtrahend.not().add(new BigInt(ONE)));
}
public BigInt mul(BigInt multiplier) {
BigInt m = new BigInt(ONE), z = new BigInt(ZERO);
BigInt x = new BigInt(this), y = new BigInt(multiplier);
if (x.lessThen(ZERO)) {
x = x.not().add(ONE);
y = y.not().add(ONE);
}
while (x.greaterThenEqual(m) && !y.equals(ZERO)) {
if (!x.and(m).equals(ZERO)) {
z = y.add(z);
}
y = y.shiftLeft(1);
m = m.shiftLeft(1);
}
return z;
}
public BigInt div(BigInt divisor) {
BigInt mask = new BigInt(ONE);
BigInt quotient = new BigInt(ZERO);
BigInt numerator = new BigInt(this), denominator = new BigInt(divisor);
if (numerator.lessThen(ZERO)) {
numerator = numerator.not().add(ONE);
}
if (denominator.lessThen(ZERO)) {
denominator = denominator.not().add(ONE);
}
while (denominator.lessThenEqual(numerator)) { // PROBLEM
denominator = denominator.shiftLeft(1);
mask = mask.shiftLeft(1);
}
while (mask.greaterThen(ONE)) {
denominator = denominator.shiftRight(1);
mask = mask.shiftRight(1);
if (numerator.greaterThenEqual(denominator)) {
numerator = numerator.sub(denominator);
quotient = quotient.or(mask);
}
}
if (number[0] != divisor.number[0]) {
return quotient.not().add(ONE);
}
return quotient;
}
public BigInt mod(BigInt y) {
// (x - y*(x/y))
BigInt x = new BigInt(this);
BigInt right = x.div(y);
BigInt mid = y.mul(right);
return x.sub(mid);
}
//completly inefficient for numbers larger than 32 bit
@Deprecated
public BigInt div2(BigInt divisor) {
BigInt c = new BigInt(ZERO), sign = new BigInt(ZERO);
BigInt x = new BigInt(this), y = new BigInt(divisor);
if (x.lessThen(ZERO)) {
x = x.not().add(ONE);
sign = sign.xor(ONE);
}
if (y.lessThen(ZERO)) {
y = y.not().add(ONE);
sign = sign.xor(ONE);
}
if (!y.equals(ZERO)) {
while (x.greaterThenEqual(y)) {
x = x.sub(y);
c = c.add(ONE);
}
}
if (!sign.equals(ZERO)) {
c = c.not().add(ONE);
}
return c;
}
//doesn't work for big numbers close to maximum bit
@Deprecated
public BigInt mod2(BigInt mod) {
BigInt y = new BigInt(this);
BigInt x = new BigInt(mod);
BigInt p = new BigInt(x);
if (y.lessThen(ZERO)) {
y = y.not().add(ONE);
}
if (p.lessThen(ZERO)) {
p = p.not().add(ONE);
x = x.not().add(ONE);
}
while (p.lessThen(y)) { //forever loop
p = p.shiftLeft(1);
}
while (p.greaterThenEqual(x)) {
if (y.greaterThenEqual(p)) {
y = y.sub(p);
}
p = p.shiftRight(1);
}
if (number[0]) {
y = y.not().add(ONE);
}
return y;
}
@Override
public boolean equals(Object obj) {
if (obj == null)
return false;
if (obj == this)
return true;
if (!(obj instanceof BigInt))
return false;
BigInt bigInt = (BigInt) obj;
for (int i = 0; i < bigInt.number.length; i++) {
if (number[i] != bigInt.number[i]) {
return false;
}
}
if (!endianness.equals(bigInt.endianness)) {
return false;
}
return true;
}
public boolean lessThen(BigInt num) {
if (equals(num)) {
return false;
}
if (number[0] && !num.number[0]) {
return true;
} else if (!number[0] && num.number[0]) {
return false;
}
BigInt left = null, right = null;
if (number[0]) {
left = not().add(ONE);
right = num.not().add(ONE);
} else {
left = this;
right = num;
}
for (int i = 1; i < number.length; i++) {
if (left.number[i] != right.number[i]) {
if (number[0]) {
return !(!left.number[i] && right.number[i]);
} else {
return !left.number[i] && right.number[i];
}
}
}
return false;
}
public boolean lessThenEqual(BigInt num) {
if (equals(num)) {
return true;
}
return lessThen(num);
}
public boolean greaterThen(BigInt num) {
return !lessThen(num);
}
public boolean greaterThenEqual(BigInt num) {
if (equals(num)) {
return true;
}
return greaterThen(num);
}
/**
* BITWISE OPERATORS*
*/
//logical bitwise shift lefts
public BigInt shiftLeft(int n) {
//IT WORKS BECAUSE NEW OBJECT IS SET TO 0;
BigInt shifted = new BigInt();
for (int i = 0; i < number.length - n; i++) {
shifted.number[i] = number[i + n];
}
return shifted;
}
//logical bitwise shift right
public BigInt shiftRight(int n) {
BigInt shifted = new BigInt();
for (int i = number.length - 1; i >= n; i--) {
shifted.number[i] = number[i - n];
}
boolean sign = number[0];
for (int i = 0; i < n; i++) {
shifted.number[i] = sign;
}
return shifted;
}
//bitwise or |
public BigInt or(BigInt num) {
BigInt newInt = new BigInt();
for (int i = 0; i < number.length; i++) {
newInt.number[i] = number[i] | num.number[i];
}
return newInt;
}
//bitwise and &
public BigInt and(BigInt num) {
BigInt newInt = new BigInt();
for (int i = 0; i < number.length; i++) {
newInt.number[i] = number[i] & num.number[i];
}
return newInt;
}
//bitwise exclusive or ^
public BigInt xor(BigInt num) {
BigInt newInt = new BigInt();
for (int i = 0; i < number.length; i++) {
newInt.number[i] = number[i] ^ num.number[i];
}
return newInt;
}
public BigInt not() {
BigInt negate = new BigInt();
for (int i = 0; i < number.length; i++) {
negate.number[i] = !number[i];
}
return negate;
}
@Override
public String toString() {
/* StringBuilder binaryRepr = new StringBuilder();
for (byte b : number) {
binaryRepr.append(b);
}*/
String decRepr = "";
BigInt copy = new BigInt(this);
if (copy.lessThen(ZERO)) {
copy = copy.not().add(ONE);
}
while (copy.greaterThenEqual(ONE)) {
BigInt rem = copy.mod(TEN);
copy = copy.div(TEN);
decRepr = String.valueOf(Integer.parseInt(getDecimalRemainder(rem), 2)) + decRepr;
}
if (number[0]) {
return "-" + decRepr;// + binaryRepr.toString();
}
return decRepr;// + binaryRepr.toString();
//return binaryRepr.toString();
}
private String getDecimalRemainder(BigInt copy) {
String decimalString = "";
for (int i = copy.number.length - 1; i >= copy.number.length - 4; i--) {
decimalString = (copy.number[i] ? "1" : "0") + decimalString;
}
return decimalString;
}
public String toBinaryString() {
StringBuilder binaryString = new StringBuilder();
boolean isFirstBit = false;
for (boolean b: number) {
if (b) {
isFirstBit = true;
}
if (isFirstBit) {
binaryString.append(b);
}
}
return binaryString.toString();
}
public static BigInt nextBigInt(BigInt min, BigInt max) {
BigInt pseudo = new BigInt();
Random rnd = new Random();
for (int i = 2; i < pseudo.number.length; i++) {
pseudo.number[i] = rnd.nextBoolean();
}
return pseudo.mod(max).add(min);
}
public static void main(String[] args) {
String big = "";
for(int i = 0; i < 126; i++) {
big += "1";
}
StopWatch stopWatch = new StopWatch();
System.out.println(new BigInt(big));
System.out.println(stopWatch.elapsedTime());
}
}
答案 0 :(得分:6)
而不是boolean[]
使用int[]
来保存您的号码位。通过这种方式,您可以更快地实现大多数操作,一次操作30位,而不只是1。
您可以将数组元素0中的最低30位保留在数组元素1中的下30位,依此类推。使用这种结构可以直接实现逻辑运算(&amp;,|,^)。
对于算术运算,您必须跟踪进位。例如,在添加两个数组元素0之后,如果结果大于30位,则清除溢出位并将1添加到数组元素1的总和。
乘法可以使用long
来完成:两个int
值的乘积总是适合long
。使用手动乘以两个十进制数的方法。只需使用30位数字而不是数字0-9。
像karatsuba这样的更复杂的乘法方法不能为只有512位长的数字付出代价。
虽然实现和优化这些操作很有趣,但在实现中也很容易出现细微的错误。因此,如果您为生产代码执行此操作,请确保编写大量单元测试。使用经过良好测试的第三方实现可能更好,而不是自己动手。