我有一个像这样的pandas DataFrame:
From To Val
GE VD 1000
GE VS 1600
VS VD 1500
VS GE 600
VD GE 1200
VD VS 1300
我想将“from”或“to”列中没有“GE”的每一行替换为两行,一行在“from”列中包含“GE”,另一行包含“GE” “到”栏目。
在上面的例子中,我将用以下两行替换第三行:
GE VD 1500
VS GE 1500
我尝试使用“apply”但我无法弄清楚如何返回正确的数据框。例如
def myfun(row):
if "GE" not in (row["from"], row["to"]):
row1=pd.DataFrame(row).T
row2=row1.copy()
row1["from"]="GE"
row2["to"]="GE"
return pd.concat([row1, row2])
else:
return pd.DataFrame(row).T
给出了一个奇怪的结果:
>> df.apply(myfun, axis=1)
Val from to
0 Val from to
1 Val from to
2 Val from to
3 Val from to
4 Val from to
5 Val from to
虽然我的功能似乎是正确的:
>> myfun(df.loc[5])
Val from to
5 13 GE VD
5 13 VS GE
我可以想办法通过在两个子数据帧中过滤我的数据帧来实现这一点,一个行需要重复,一个行需要重复。然后复制第一个数据帧,进行更改并将所有三个DF整理在一起。但它很难看。任何人都可以提出更优雅的方式吗?
换句话说,应用函数是否可以返回一个DataFrame,就像在R中我们会用ddply做的那样?
谢谢
答案 0 :(得分:5)
过滤
In [153]: sub = df[(~df[['From', 'To']].isin(['GE'])).all(1)]
In [154]: sub
Out[154]:
From To Val
2 VS VD 1500
5 VD VS 1300
[2 rows x 3 columns]
In [179]: good = df.ix[df.index - sub.index]
In [180]: good
Out[180]:
From To Val
0 GE VD 1000
1 GE VS 1600
3 VS GE 600
4 VD GE 1200
[4 rows x 3 columns]
定义一个函数,将所需的值作为DataFrame提供:
def new_df(row):
return pd.DataFrame({"From": ["GE", row["From"]],
"To": [row["To"], "GE"],
"Val": [row["Val"], row["Val"]]})
将该功能应用于行:
In [181]: new = pd.concat([new_df(y) for _, y in x.iterrows()], axis=0, ignore_index=True)
In [182]: new
Out[182]:
From To Val
0 GE VD 1500
1 VS GE 1500
2 GE VS 1300
3 VD GE 1300
[4 rows x 3 columns]
连接在一起
In [183]: pd.concat([good, new], axis=0, ignore_index=True)
Out[183]:
From To Val
0 GE VD 1000
1 GE VS 1600
2 VS GE 600
3 VD GE 1200
4 GE VD 1500
5 VS GE 1500
6 GE VS 1300
7 VD GE 1300
[8 rows x 3 columns]
答案 1 :(得分:1)
这使用两次通过。如果添加else
条件连接将保持不变的行,则可以缩短它。但是,我觉得这更具可读性,因为我们使用itertuples
来查看行,这里的成本是线性的,我们只是根据需要形成每个元组(不是所有行的元组的大列表)同时地)。
类似地,您可以在if
语句中弹出一行,并将其位置中的两个新行连接回原始数据对象df
,这样就不会产生内存成本创建keeper_rows
。除非DataFrame是巨大的,否则为这样的任务进行这些优化通常是不值得的。
keeper_rows = df.ix[[i for i,x in enumerate(df.itertuples()) if 'GE' in x[0:2]]]
for row_as_tuple in df.itertuples():
from_other, to_other, val = row_as_tuple
if "GE" not in (from_other, to_other):
new_rows = {"From":["GE", from_other],
"To" :[to_other, "GE"],
"Val" :[val, val]}
keeper_rows = pandas.concat([keeper_rows, pandas.DataFrame(new_rows)],
ignore_index=True)