我正在编写一个程序,可以找到达到指定限制的素数。我试过了:
Sub Main()
Console.WriteLine("Enter the maximum")
Dim primes As List(Of Integer) = New List(Of Integer)
Dim m As Integer = Console.ReadLine()
Dim odds As List(Of Integer) = GetOdds(m)
For Each i In odds
Dim x As List(Of Integer) = GetFactors(i)
Dim con As Boolean = (x(0).ToString().Contains(i) Or x(1).ToString().Contains(i))
If x.Count = 2 Then
primes.Add(i)
' *****
End If
Next
Console.WriteLine("The primes are: " + String.Join(", ", primes))
Console.ReadLine()
End Sub
Function GetOdds(ByVal max As Int32) As List(Of Integer)
Dim g As List(Of Integer) = New List(Of Integer)
For i = 2 To max
If i Mod 2 = 0 Then
Continue For
Else : g.Add(i)
End If
Next
Return g
End Function
Function GetFactors(ByVal x As Integer) As List(Of Integer)
Dim factors As List(Of Integer) = New List(Of Integer)
Dim max As Integer = Math.Sqrt(Convert.ToDouble(x))
For i = 1 To max
If x Mod i = 0 Then
factors.Add(i)
If i <> x / i Then
factors.Add(i / x)
End If
End If
Next
Return factors
End Function
但是当我运行它时,程序会跳过2.我该如何解决这个问题?我试着添加:
primes.Insert(0, 2)
在我用星号标记的代码区域。
但是程序会输出太多的2。
我该怎么办?谢谢。
答案 0 :(得分:2)
您只是检查奇数是否为素数。 2是偶数,所以这就是程序省略它的原因。 所以你应该初始化你的集合,使它已经包含2(它是唯一的偶数素数):
Dim odds as List(Of Integer)
odds.Add(2)
然后添加GetOdds(i)
答案 1 :(得分:0)
虽然您的代码看起来会起作用,但您会发现,找到较大数字的素数将需要相当长的时间。
改良的Eratosthenes筛子将很好地适用于此。
而不是制作一个奇数列表,以便在主循环中以奇数开始并逐步检查。
Dim primes As List(Of Integer) = New List(Of Integer)
primes.Add(2)
For i = 3 To m Step 2
If IsPrime(i) Then
primes.Add(i)
End If
Next
Dim Sieve As New List(Of Integer)({2, 3, 5, 7, 11, 13})
Function IsPrime(num As Integer) As Boolean
If num = 1 Then Return False
'If number is in the sieve it's prime
If Sieve.Contains(num) Then Return True
'Set limit to the square root of the numnber
Dim Max As Integer = CInt(Math.Sqrt(num))
'Since every num will be odd, there's no need to check if it's divisible by 2
Dim I As Integer = 1
'Check if the number is a multiple of any elements in the sieve
While (I < Sieve.Count AndAlso Sieve(I) <= Max)
If (num Mod Sieve(I) = 0) Then Return False
I += 1
End While
'If the number is too big for the sieve to adequately check, build the sieve bigger,
'and check the number against the new primes.
If Max > Sieve.Last Then
For J As Integer = Sieve.Last + 2 To Max Step 2
Dim good As Boolean = True
For K = 0 To Sieve.Count - 1
If J Mod Sieve(K) = 0 Then
good = False
Exit For
End If
Next
If good Then
Sieve.Add(J)
If num Mod J = 0 Then Return False
End If
Next
End If
Return True
End Function
基本上,这从前6个素数的列表开始,并使用它来检查素数,根据需要将其构建得更大。查找高达1000000的所有素数大约需要1秒。由于列表在每次添加素数时都处于类级别,因此有助于对函数的连续调用。
当然,Eratosthenes筛子的更真实的实施效果更好:
Function GeneratePrimes(n As Integer) As List(Of Integer)
Dim bits = New BitArray(n + 1, True)
Dim primes = New List(Of Integer)
bits(0) = False
bits(1) = False
For i As Integer = 2 To CInt(Math.Sqrt(n))
If bits(i) Then
For j As Integer = i * i To n Step i
bits(j) = False
Next
primes.Add(i)
End If
Next
For i = CInt(Math.Sqrt(n)) + 1 To n
If bits(i) Then
primes.Add(i)
End If
Next
Return primes
End Function