我正在使用ZMQ流,它们基于他们自己实现的龙卷风的IOLoop。我遇到了一个问题,我希望有同步行为,但IOLoop迫使我进入异步执行。具体如下:
我有一个专门负责相机设置的课程(相机处于不同的过程中):
class HamSettingsManager(object):
'''
This class makes sure the camera is set to the requested settings.
'''
def __init__(self, blabla, loop=None):
self._msg = messaging.CamSettings(blabla)
self._loop = loop or zmq.eventloop.ioloop.IOLoop()
self._sub = messaging.StreamFactory.sub_stream(
messaging.channel_map.DI().settings,
loop=self._loop,
on_recv=self._on_settings)
self._pub = messaging.StreamFactory.pub_stream(
messaging.channel_map.DI().update_settings,
loop=self._loop)
@tornado.gen.coroutine
def set_settings(self):
self._pub.send(self._msg.SerializeToString())
self._new_settings = True
self._changed = None
while self._new_settings:
log.debug("Waiting for camera settings to take effect.")
yield tornado.gen.Task(self._loop.add_timeout, time.time() + 0.05)
def _on_settings(self, data):
msg = messaging.HamSettings()
msg.ParseFromString(data[-1])
if msg == self._msg:
self._new_settings = False
else:
if not self._new_settings:
log.warning("Someone has changed the camera settings underneath the aligner.")
self._changed = time.time()
log.debug("Settings not as expected, resending")
log.debug("Current settings: \n%s" % msg)
log.debug("Expected settings: \n%s" % self._msg)
self._pub.send(self._msg.SerializeToString())
我期望发生的是set_settings只会在设置生效后才会返回,但实际发生的是执行只是继续,就像我生成一个线程一样。在IOLoop等待的正确方法是什么?
答案 0 :(得分:2)
如果不停止事件循环,则无法创建阻止调用;这就是“阻塞”的含义。作为协程,set_settings
立即返回Future
;调用者负责等待Future
被解决。通常,这意味着调用它的任何东西也必须是协程(或其他异步)并使用yield mgr.set_settings()
而不是简单的调用。