使用Python中的“最近”方法进行外推

时间:2014-01-08 17:44:05

标签: python scipy extrapolation

我希望找到以下Matlab语句的Python等价物:

vq interp1(x,y, xq,'nearest','extrap')

看起来interp(xq, x, y)非常适合线性插值/外推。

我也看了

F = scipy.interpolate.interp1d(x, y, kind='nearest')

适用于最近的方法,但不会执行外推。

还有什么我忽略了吗?感谢。

2 个答案:

答案 0 :(得分:6)

对于使用最近插值进行外推的线性插值,请使用numpy.interp。它默认情况下会这样做。

例如:

yi = np.interp(xi, x, y)

否则,如果您只想在最近处进行最近插值,如您所述,您可以用简短但效率低下的方式进行:(如果需要,可以将其设为单行插值)

def nearest_interp(xi, x, y):
    idx = np.abs(x - xi[:,None])
    return y[idx.argmin(axis=1)]

或者以更有效的方式使用searchsorted

def fast_nearest_interp(xi, x, y):
    """Assumes that x is monotonically increasing!!."""
    # Shift x points to centers
    spacing = np.diff(x) / 2
    x = x + np.hstack([spacing, spacing[-1]])
    # Append the last point in y twice for ease of use
    y = np.hstack([y, y[-1]])
    return y[np.searchsorted(x, xi)]

为了说明numpy.interp与上面最近的插值示例之间的差异:

import numpy as np
import matplotlib.pyplot as plt

def main():
    x = np.array([0.1, 0.3, 1.9])
    y = np.array([4, -9, 1])
    xi = np.linspace(-1, 3, 200)

    fig, axes = plt.subplots(nrows=2, sharex=True, sharey=True)
    for ax in axes:
        ax.margins(0.05)
        ax.plot(x, y, 'ro')

    axes[0].plot(xi, np.interp(xi, x, y), color='blue')
    axes[1].plot(xi, nearest_interp(xi, x, y), color='green')

    kwargs = dict(x=0.95, y=0.9, ha='right', va='top')
    axes[0].set_title("Numpy's $interp$ function", **kwargs)
    axes[1].set_title('Nearest Interpolation', **kwargs)

    plt.show()

def nearest_interp(xi, x, y):
    idx = np.abs(x - xi[:,None])
    return y[idx.argmin(axis=1)]

main()

enter image description here

答案 1 :(得分:0)

在更高版本的SciPy(至少v0.19.1 +)中,scipy.interpolate.interp1d具有选项fill_value = “extrapolate”

例如:

import pandas as pd
>>> s = pd.Series([1, 2, 3])
Out[1]: 
0    1
1    2
2    3
dtype: int64

>>> t = pd.concat([s, pd.Series(index=s.index + 0.1)]).sort_index()
Out[2]: 
0.0    1.0
0.1    NaN
1.0    2.0
1.1    NaN
2.0    3.0
2.1    NaN
dtype: float64

>>> t.interpolate(method='nearest')
Out[3]: 
0.0    1.0
0.1    1.0
1.0    2.0
1.1    2.0
2.0    3.0
2.1    NaN
dtype: float64

>>> t.interpolate(method='nearest', fill_value='extrapolate')
Out[4]: 
0.0    1.0
0.1    1.0
1.0    2.0
1.1    2.0
2.0    3.0
2.1    3.0
dtype: float64