如何将weka多层感知器输出转换为matlab代码

时间:2014-01-08 12:46:57

标签: c matlab machine-learning neural-network weka

我正在尝试将weka多层感知器输出转换为matlab代码,以便我可以使用此代码对新输入进行分类。 weka输出如下所示。我知道关于MLP算法的理论。但我不知道如何将weka输出转换为matlab代码。什么是sigmoid节点0的等式。 out put如下所示。我试着这样做。

node0= node4(weight)+node5(weight)+node6(weight);
node0 = 1 / (1 + exp(-node0));
if(node0 < threshold)
    node0 = 0;
  end

我为所有节点做了但输出不正确。

Sigmoid Node 0
    Inputs    Weights
    Threshold    0.9406969488131344
    Node 4    -2.1903200701922616
    Node 5    -15.897044602974933
    Node 6    0.3041300920465129
Sigmoid Node 1
    Inputs    Weights
    Threshold    -0.47458154982115386
    Node 4    -2.404682382816731
    Node 5    -1.0175108003621611
    Node 6    -1.248161956451173
Sigmoid Node 2
    Inputs    Weights
    Threshold    -2.494927166085809
    Node 4    -2.5916900088001404
    Node 5    2.6569952694128207
    Node 6    3.6695765419956974
Sigmoid Node 3
    Inputs    Weights
    Threshold    -2.8679148239112555
    Node 4    3.548745253783415
    Node 5    1.8555144089470257
    Node 6    -3.5768482414822405
Sigmoid Node 4
    Inputs    Weights
    Threshold    2.5705895442897604
    Attrib length    19.329302599023382
    Attrib width    0.46083507698821957
Sigmoid Node 5
    Inputs    Weights
    Threshold    23.728757673706202
    Attrib length    26.251966218668777
    Attrib width    3.4888088475120576
Sigmoid Node 6
    Inputs    Weights
    Threshold    -3.6494152797182733
    Attrib length    10.163410415907084
    Attrib width    -3.6153885660597807
Class pede
    Input
    Node 0
Class bike
    Input
    Node 1
Class auto
    Input
    Node 2
Class lkw
    Input
    Node 3

0 个答案:

没有答案