VHDL微处理器/微控制器

时间:2014-01-06 17:39:34

标签: controller vhdl processor xilinx microprocessors

我正在学习在Xilinx(VHDL)上编码。接下来,我想制作一个简单的微处理器/微控制器,并在此过程中了解切片组件。所以我的目标是尝试使用AMD 2901(4位片)对8位微处理器进行编码。 (我已经拥有2901的代码及其有关输入和输出信号的所有信息。)

我知道第一步是制作微处理器的架构,所以我最终得到了这样的东西(我知道总线的带宽将与我正在寻找的东西非常不同)。

http://www.cs.binghamton.edu/~reckert/wk15fig1.JPG (基本上我对微处理器和微控制器的所有了解都是从http://www.cs.binghamton.edu/~reckert/hardwire3new.html}

获得的

以下是准时问题:

  1. 如图所示,如何编写中央总线代码?如何使用图中央大总线“监听”和“写”我的内存和组件?

  2. 我想使用2901 ALU(其中两个),所以我有一个8位微处理器。问题是:假设我的操作码使用xxxxx001(其中x是控制信号,001表示为ALU添加)以便在ALU上添加功能,所以...因为我有一个切片ALU我的操作码应该是xxxxx001001是否向两个ALU发出指令?或者ALU应该共享相同的“001”命令? (我想可以知道如何在VHDL中使用总线,使两个端口“监听”或其他东西。)

  3. 如果您可以与我分享一些教程或链接信息,可以帮助我实现我的目标,这将是非常棒的。我搜索了很多,发现的信息非常少。

1 个答案:

答案 0 :(得分:3)

这个答案是关于你问题的第3部分。

您可能会发现查看the MCPU project很有用。它是77行VHDL代码中的8位CPU。因为作者已经将整个设计压缩成32个宏单元,所以代码在某些地方有点棘手,但是the design document有帮助。

我还创建了一个针对代码可读性的重构版本,包含在下面。请注意,我不是该项目的原作者 - 所有荣誉都归TimBöscke所有。

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mcpu is
    port (
        data_bus: inout std_logic_vector(7 downto 0);
        address: out std_logic_vector(5 downto 0);
        n_oe: out std_logic;
        -- Asynchronous memory interface
        n_we: out std_logic;    
        n_reset: in std_logic;
        clock: in std_logic
    );
end;

architecture refactored of mcpu is
  signal accumulator: std_logic_vector(8 downto 0);
  alias carry is accumulator(8);  
  alias result is accumulator(7 downto 0);
  alias opcode is data_bus(7 downto 6);

  signal address_register: std_logic_vector(5 downto 0);
  signal pc: std_logic_vector(5 downto 0);
  signal states: std_logic_vector(2 downto 0);

  type cpu_state_type is (FETCH, WRITE, ALU_ADD, ALU_NOR, BRANCH_NOT_TAKEN);
  signal cpu_state: cpu_state_type;

  type state_encoding_type is array (cpu_state_type) of std_logic_vector(2 downto 0);
  constant STATE_ENCODING: state_encoding_type := (
      FETCH => "000", 
      WRITE => "001", 
      ALU_ADD => "010", 
      ALU_NOR => "011", 
      BRANCH_NOT_TAKEN => "101"
  );

begin
    process (clock, n_reset)
    begin
        if not n_reset then
            -- start execution at memory location 0
            address_register <= (others => '0');  
            states <= "000";
            cpu_state <= FETCH;
            accumulator <= (others => '0');
            pc <= (others => '0');
        elsif rising_edge(clock) then

            -- PC / Adress path
            if cpu_state = FETCH then
              pc <= address_register + 1;
              address_register <= data_bus(5 downto 0);
            else
              address_register <= pc;
            end if;

            -- ALU / Data Path
            case cpu_state is
                when ALU_ADD => 
                    accumulator <= ('0' & result) + ('0' & data_bus);
                when ALU_NOR => 
                    result <= result nor data_bus;
                when BRANCH_NOT_TAKEN => 
                    carry <= '0';
                when others => null;
            end case;

            -- State machine
            if cpu_state /= FETCH then 
                cpu_state <= FETCH;
            elsif opcode ?= "11" and carry then 
                cpu_state <= BRANCH_NOT_TAKEN;
            else
                states <= "0" & not opcode;       -- execute instruction
                case opcode is
                    when "00" => cpu_state <= ALU_NOR;  -- 011
                    when "01" => cpu_state <= ALU_ADD;  -- 010                    
                    when "10" => cpu_state <= WRITE;    -- 001
                    when "11" => cpu_state <= FETCH;    -- 000
                    when others => null;                     
                end case;
            end if;
        end if;
    end process;

    -- output
    address <= address_register;    
    data_bus <= result when (cpu_state = WRITE) else (others => 'Z');

    -- output enable is active low, asserted only when
    -- rst=1, clk=0, and state!=001(wr_acc) and state!=101(read_pc)
    n_oe <= '1' when (clock='1' or cpu_state = WRITE or n_reset = '0' or cpu_state = BRANCH_NOT_TAKEN) else '0';

    -- write enable is active low, asserted only when
    -- rst=1, clk=0, and state=001(wr_acc)
    n_we <= '1' when (clock = '1' or cpu_state /= WRITE or n_reset = '0') else '0';

end;