最近我写了一个基于递归的算法来水平打印二叉树。 一般来说,我没有任何问题将基于递归的算法转换为基于迭代的算法,但我无法弄清楚如何做到这一点。
说我们是一个载体
std::vector<int> tree = {10,9,8,7,6,5,4};
代表以下树:
10
/ \
9 8
/\ /\
7 6 5 4
我的算法通过以下路线工作:
index -> left -> left Or in our case 10 -> 9 -> 7
-> right -> 6
-> right -> left -> 8 -> 5
-> right -> 4
等,并根据树的大小进行扩展。我无法理解的是当我有条件地使用递归时,我如何将代码转换为while循环。我不太擅长解释所以这里是代码。
#include <string>
#include <vector>
#include <iostream>
#include <algorithm>
#include <unistd.h>
/* The Padding function handles the spacing and the vertical lines whenever we print a *
* right child. This depends on the previous parent-child hierarchy of the child *
* Printer handles the work of printing the elements and uses a depth-first-search *
* algorithm as it's core. Left children are printed horizontally while the right ones *
* are printed vertically. Print_tree is a wrapper. It also finds the max-length value *
* which will be used for formatting so that the formatting won't get messed up because *
* of the different number of digits. */
std::string do_padding (unsigned index, unsigned mlength){
std::string padding;
while(int((index-1)/2) != 0){
padding = (int((index-1)/2) % 2 == 0) ?
std::string(mlength+4,' ') + " " + padding :
std::string(mlength+3,' ') + "| " + padding ;
index = int((index-1)/2);
}
return padding;
}
template <class T>
void printer (std::vector<T> const & tree, unsigned index, unsigned mlength){
auto last = tree.size() - 1 ;
auto left = 2 * index + 1 ;
auto right = 2 * index + 2 ;
std::cout << " " << tree[index] << " " ;
if (left <= last){
auto llength = std::to_string(tree[left]).size();
std::cout << "---" << std::string(mlength - llength,'-');
printer(tree,left,mlength);
if (right <= last) {
auto rlength = std::to_string(tree[right]).size();
std::cout << std::endl<< do_padding(right,mlength) << std::string(mlength+ 3,' ') << "| " ;
std::cout << std::endl << do_padding(right,mlength) << std::string(mlength+ 3,' ') << "└─" <<
std::string(mlength - rlength,'-');
printer(tree,right,mlength);
}
}
}
template <class T>
void print_tree (std::vector<T> & tree){
unsigned mlength = 0;
for (T & element : tree){
auto length = std::to_string(element).size();
if (length > mlength) {
mlength = length;
}
}
std::cout << std::fixed << std::string(mlength- std::to_string(tree[0]).size(),' ') ;
printer(tree,0,mlength);
}
int main() {
std::vector<int> test;
for (auto i =0; i != 200; ++i) {
test.push_back(rand() % 12200);
}
std::make_heap(test.begin(),test.end());
std::cout << std::endl << "Press ENTER to show heap tree.." << std::endl;
std::cin.ignore();
print_tree(test);
std::cout << std::endl;
}
这可能不值得重写,但我想知道如何处理这样的递归,以防我将来要做类似的事情。
答案 0 :(得分:1)
我记得,您发布了Print heap array in tree format个问题。所以,对我来说(没有阅读代码),树遍历的核心算法是DFS。
使用堆栈可以做的迭代迭代算法。堆栈基本上包含所有访问过的节点,并且能够返回它所采用的路径。在Iterative DFS vs Recursive DFS and different elements order给出了一个例子。
答案 1 :(得分:1)
对于遍历树的大多数算法,如果要以非递归方式表示它们,则需要一个额外的数据结构。对于深度优先遍历(如您的情况),您通常会使用堆栈(对于广度优先遍历,队列用于...)
在伪代码中,打印树看起来像
function print_tree(tree_vector)
s = new stack<int>()
s.push(0)
while (!s.empty())
index = s.pop()
print (tree_vector[index])
left = 2*index + 1
right = 2*index + 2
if (right < tree_vector.size())
s.push(right)
if (left < tree_vector.size())
s.push(left)
end while
end function
请注意,此堆栈隐含地表示编译器在进行递归调用时内部使用的调用堆栈。