我有非常大的文件,我必须阅读和处理。这可以使用线程并行完成吗?
这是我做过的一些代码。但它似乎没有让读取和处理文件的执行时间更短。
String[] files = openFileDialog1.FileNames;
Parallel.ForEach(files, f =>
{
readTraceFile(f);
});
private void readTraceFile(String file)
{
StreamReader reader = new StreamReader(file);
String line;
while ((line = reader.ReadLine()) != null)
{
String pattern = "\\s{4,}";
foreach (String trace in Regex.Split(line, pattern))
{
if (trace != String.Empty)
{
String[] details = Regex.Split(trace, "\\s+");
Instruction instruction = new Instruction(details[0],
int.Parse(details[1]),
int.Parse(details[2]));
Console.WriteLine("computing...");
instructions.Add(instruction);
}
}
}
}
答案 0 :(得分:18)
看起来您的应用程序的性能主要受IO限制。但是,您的代码中仍然有一些CPU限制工作。这两项工作是相互依赖的:在IO完成其工作之前,您的CPU绑定工作无法启动,并且在CPU完成上一个工作之前,IO不会继续执行下一个工作项。他们互相抱着对方。因此,如果您并行执行IO和CPU绑定工作,那么可能(在最底部解释)您将看到吞吐量的提高,如下所示:
void ReadAndProcessFiles(string[] filePaths)
{
// Our thread-safe collection used for the handover.
var lines = new BlockingCollection<string>();
// Build the pipeline.
var stage1 = Task.Run(() =>
{
try
{
foreach (var filePath in filePaths)
{
using (var reader = new StreamReader(filePath))
{
string line;
while ((line = reader.ReadLine()) != null)
{
// Hand over to stage 2 and continue reading.
lines.Add(line);
}
}
}
}
finally
{
lines.CompleteAdding();
}
});
var stage2 = Task.Run(() =>
{
// Process lines on a ThreadPool thread
// as soon as they become available.
foreach (var line in lines.GetConsumingEnumerable())
{
String pattern = "\\s{4,}";
foreach (String trace in Regex.Split(line, pattern))
{
if (trace != String.Empty)
{
String[] details = Regex.Split(trace, "\\s+");
Instruction instruction = new Instruction(details[0],
int.Parse(details[1]),
int.Parse(details[2]));
Console.WriteLine("computing...");
instructions.Add(instruction);
}
}
}
});
// Block until both tasks have completed.
// This makes this method prone to deadlocking.
// Consider using 'await Task.WhenAll' instead.
Task.WaitAll(stage1, stage2);
}
我非常怀疑这是你的CPU工作,但如果恰好是这种情况,你也可以像这样并行化第二阶段:
var stage2 = Task.Run(() =>
{
var parallelOptions = new ParallelOptions { MaxDegreeOfParallelism = Environment.ProcessorCount };
Parallel.ForEach(lines.GetConsumingEnumerable(), parallelOptions, line =>
{
String pattern = "\\s{4,}";
foreach (String trace in Regex.Split(line, pattern))
{
if (trace != String.Empty)
{
String[] details = Regex.Split(trace, "\\s+");
Instruction instruction = new Instruction(details[0],
int.Parse(details[1]),
int.Parse(details[2]));
Console.WriteLine("computing...");
instructions.Add(instruction);
}
}
});
});
请注意,如果您的CPU工作组件与IO组件相比可以忽略不计,那么您将看不到太多的加速。与顺序处理相比,工作负载越均匀,管道的性能就越好。
由于我们正在讨论性能问题,因此我对上述代码中阻塞调用的数量并不特别激动。如果我在我自己的项目中这样做,我会去async / await路由。在这种情况下,我选择不这样做,因为我希望保持易于理解和易于集成。
答案 1 :(得分:6)
从你想要做的事情来看,你几乎肯定是I / O绑定的。在这种情况下尝试并行处理无济于事,实际上可能会因为磁盘驱动器上的附加查找操作而导致处理速度变慢(除非您可以将数据拆分为多个轴)。
答案 2 :(得分:0)
尝试并行处理这些行。例如:
var q = from file in files
from line in File.ReadLines(file).AsParallel() // for smaller files File.ReadAllLines(file).AsParallel() might be faster
from trace in line.Split(new [] {" "}, StringSplitOptions.RemoveEmptyEntries) // split by 4 spaces and no need for trace != "" check
let details = trace.Split(null as char[], StringSplitOptions.RemoveEmptyEntries) // like Regex.Split(trace, "\\s+") but removes empty strings too
select new Instruction(details[0], int.Parse(details[1]), int.Parse(details[2]));
List<Instruction> instructions = q.ToList(); // all of the file reads and work is done here with .ToList
随机访问非SSD硬盘驱动器(当您尝试同时读取/写入不同文件或碎片文件时)通常比顺序访问慢得多(例如读取单个碎片整理文件),所以我期待并行处理单个文件,使用碎片整理文件更快。
此外,跨线程共享资源(例如Console.Write或添加到线程安全阻塞集合)可能会减慢或阻塞/死锁执行,因为某些线程必须等待其他线程完成访问该资源。