我正在使用sjcl对客户端的文件进行哈希处理,以便在开始完整上传之前检查它们是否存在于服务器上。
然而,它看起来有点慢。哈希8 MB文件大约需要15秒。我不确定是不是因为库很慢,JavaScript很慢,或算法本身很慢。它正在使用sha256
,这可能对我需要的东西有点过分。速度是关键 - 加密安全和冲突并不是特别重要。
有更快的方法吗?
$(document).on('drop', function(dropEvent) {
dropEvent.preventDefault();
_.each(dropEvent.originalEvent.dataTransfer.files, function(file) {
var reader = new FileReader();
var pos = 0;
var startTime = +new Date();
var hashObj = new sjcl.hash.sha256();
reader.onprogress = function(progress) {
var chunk = new Uint8Array(reader.result).subarray(pos, progress.loaded);
hashObj.update(chunk);
pos = progress.loaded;
if(progress.lengthComputable) {
console.log((progress.loaded/progress.total*100).toFixed(1)+'%');
}
};
reader.onload = function() {
var endTime = +new Date();
console.log('hashed',file.name,'in',endTime-startTime,'ms');
var chunk = new Uint8Array(reader.result, pos);
if(chunk.length > 0) hashObj.update(chunk);
console.log(sjcl.codec.hex.fromBits(hashObj.finalize()));
};
reader.readAsArrayBuffer(file);
});
});
修改:根据SparkMD5发现了this answer。对于相同的8 MB文件,初始测试使其在一秒钟内运行,但它仍然比我想要的慢。
答案 0 :(得分:3)
xxHash提供32位哈希值。它似乎比SparkMD5快约30%。但是,它似乎不适用于HTML5的ArrayBuffer
,因此必须将文件作为文本读取。
var blobSlice = File.prototype.slice || File.prototype.mozSlice || File.prototype.webkitSlice;
var chunkSize = 1024 * 1024 * 2;
$(document).on('drop', function (dropEvent) {
dropEvent.preventDefault();
_.each(dropEvent.originalEvent.dataTransfer.files, function (file) {
var startTime = +new Date(), elapsed;
var chunks = Math.ceil(file.size / chunkSize);
var currentChunk = 0;
var xxh = XXH();
var fileReader = new FileReader();
var readNextChunk = function() {
var start = currentChunk * chunkSize;
var end = Math.min(start + chunkSize, file.size);
fileReader.readAsText(blobSlice.call(file, start, end));
};
fileReader.onload = function (e) {
console.log("read chunk nr", currentChunk + 1, "of", chunks);
xxh.update(e.target.result);
++currentChunk;
if (currentChunk < chunks) {
readNextChunk();
} else {
elapsed = +new Date() - startTime;
console.info("computed hash", xxh.digest().toString(16), 'for file', file.name, 'in', elapsed, 'ms');
}
};
fileReader.onerror = function () {
console.warn("oops, something went wrong.");
};
readNextChunk();
});
});
我认为 blobSlice
会复制该文件,我不是非常热衷于此。我也不特别喜欢将二进制数据视为文本。我通过挖掘xxHash
的来源创建了与ArrayBuffer
API一起使用的替代版本 - 结果只缺少一种方法,使HTML5's Uint8Array
像Node.js Buffer
一样工作
/**
* Hack to make Uint8Array work like a Node.js Buffer
*
* @param {Buffer} targetBuffer Buffer to copy into
* @param {Number} targetStart Optional, Default: 0
* @param {Number} sourceStart Optional, Default: 0
* @param {Number} sourceEnd Optional, Default: source length
* @see http://nodejs.org/api/buffer.html#buffer_buf_copy_targetbuffer_targetstart_sourcestart_sourceend
* @see https://developer.mozilla.org/en-US/docs/Web/API/Uint32Array
*/
Uint8Array.prototype.copy = function(targetBuffer, targetStart, sourceStart, sourceEnd) {
targetStart = targetStart || 0;
sourceStart = sourceStart || 0;
sourceEnd = sourceEnd || this.length;
for(var i=sourceStart; i<sourceEnd; ++i) {
targetBuffer[targetStart+i] = this[i];
}
};
$(document).on('drop', function(dropEvent) {
dropEvent.preventDefault();
_.each(dropEvent.originalEvent.dataTransfer.files, function(file) {
var reader = new FileReader();
var pos = 0;
var startTime = +new Date();
var xxh = XXH();
reader.onprogress = function(progress) {
var length = progress.loaded - pos;
var arr = new Uint8Array(reader.result, pos, length);
pos += length;
xxh.update(arr);
if(progress.lengthComputable) {
console.log((progress.loaded/progress.total*100).toFixed(1)+'%');
}
};
reader.onload = function() {
var arr = new Uint8Array(reader.result, pos);
xxh.update(arr);
var elapsed = +new Date() - startTime;
console.info("computed hash", xxh.digest().toString(16), 'for file', file.name, 'in', elapsed, 'ms');
};
reader.readAsArrayBuffer(file);
});
});
不幸的是,它们在速度方面几乎完全相同,而且它仍在复制。但是,它在原始的8 MB文件上运行大约270毫秒,远远好于15秒。
答案 1 :(得分:2)
SparkMD5的速度要快得多:
var blobSlice = File.prototype.slice || File.prototype.mozSlice || File.prototype.webkitSlice;
var chunkSize = 1024 * 1024 * 2;
$(document).on('drop', function (dropEvent) {
dropEvent.preventDefault();
_.each(dropEvent.originalEvent.dataTransfer.files, function (file) {
var startTime = +new Date(), elapsed;
var chunks = Math.ceil(file.size / chunkSize);
var currentChunk = 0;
var spark = new SparkMD5.ArrayBuffer();
var fileReader = new FileReader();
var readNextChunk = function() {
var start = currentChunk * chunkSize;
var end = Math.min(start + chunkSize, file.size);
fileReader.readAsArrayBuffer(blobSlice.call(file, start, end));
};
fileReader.onload = function (e) {
console.log("read chunk nr", currentChunk + 1, "of", chunks);
spark.append(e.target.result); // append array buffer
++currentChunk;
if (currentChunk < chunks) {
readNextChunk();
} else {
elapsed = +new Date() - startTime;
console.info("computed hash", spark.end(), 'for file', file.name, 'in', elapsed, 'ms'); // compute hash
}
};
fileReader.onerror = function () {
console.warn("oops, something went wrong.");
};
readNextChunk();
});
});