我遇到了多处理模块的麻烦。我正在使用一个带有map方法的工作池来从大量文件加载数据,并且每个文件都使用自定义函数分析数据。每次处理文件时,我都希望更新一个计数器,以便我可以跟踪要处理的文件数量。 以下是示例代码:
def analyze_data( args ):
# do something
counter += 1
print counter
if __name__ == '__main__':
list_of_files = os.listdir(some_directory)
global counter
counter = 0
p = Pool()
p.map(analyze_data, list_of_files)
我无法找到解决方案。
答案 0 :(得分:54)
问题是你的进程之间没有共享counter
变量:每个单独的进程都在创建它自己的本地实例并递增它。
有关您可以在流程之间共享状态的一些技巧,请参阅文档的this section。在您的情况下,您可能希望在工作人员之间共享Value
实例
这是您的示例的工作版本(带有一些虚拟输入数据)。请注意,它使用的是全局值,我在实践中会尽量避免使用:
from multiprocessing import Pool, Value
from time import sleep
counter = None
def init(args):
''' store the counter for later use '''
global counter
counter = args
def analyze_data(args):
''' increment the global counter, do something with the input '''
global counter
# += operation is not atomic, so we need to get a lock:
with counter.get_lock():
counter.value += 1
print counter.value
return args * 10
if __name__ == '__main__':
#inputs = os.listdir(some_directory)
#
# initialize a cross-process counter and the input lists
#
counter = Value('i', 0)
inputs = [1, 2, 3, 4]
#
# create the pool of workers, ensuring each one receives the counter
# as it starts.
#
p = Pool(initializer = init, initargs = (counter, ))
i = p.map_async(analyze_data, inputs, chunksize = 1)
i.wait()
print i.get()
答案 1 :(得分:29)
没有竞争条件错误的计数器类:
class Counter(object):
def __init__(self):
self.val = multiprocessing.Value('i', 0)
def increment(self, n=1):
with self.val.get_lock():
self.val.value += n
@property
def value(self):
return self.val.value
答案 2 :(得分:2)
更快的Counter类没有使用Value的内置锁两次
class Counter(object):
def __init__(self, initval=0):
self.val = multiprocessing.RawValue('i', initval)
self.lock = multiprocessing.Lock()
def increment(self):
with self.lock:
self.val.value += 1
@property
def value(self):
return self.val.value
https://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing https://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.Value https://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.RawValue
答案 3 :(得分:1)
一个极端简单的示例,从jkp的答案改成了:
from multiprocessing import Pool, Value
from time import sleep
counter = Value('i', 0)
def f(x):
global counter
with counter.get_lock():
counter.value += 1
print("counter.value:", counter.value)
sleep(1)
return x
with Pool(4) as p:
r = p.map(f, range(1000*1000))
答案 4 :(得分:0)
我正在PyQT5中处理进程栏,所以我将线程和池一起使用
import threading
import multiprocessing as mp
from queue import Queue
def multi(x):
return x*x
def pooler(q):
with mp.Pool() as pool:
count = 0
for i in pool.imap_unordered(ggg, range(100)):
print(count, i)
count += 1
q.put(count)
def main():
q = Queue()
t = threading.Thread(target=thr, args=(q,))
t.start()
print('start')
process = 0
while process < 100:
process = q.get()
print('p',process)
if __name__ == '__main__':
main()
我放入Qthread worker中,并且可以在可接受的延迟范围内工作