我正试图获得2D数组的fft。输入是NxM
实矩阵,因此输出矩阵也是NxM
矩阵(2xNxM
输出矩阵,其复数使用属性Hermitian symmetry保存在NxM矩阵中)。
所以我想知道是否有方法在cuda中提取以分别提取实数和复数矩阵?在opencv中分割功能是有责任的。所以我在寻找cuda中的类似功能,但我还没找到它。
以下是我的完整代码
#define NRANK 2
#define BATCH 10
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cufft.h>
#include <stdio.h>
#include <iostream>
#include <vector>
using namespace std;
int main()
{
const size_t NX = 4;
const size_t NY = 5;
// Input array - host side
float b[NX][NY] ={
{0.7943 , 0.6020 , 0.7482 , 0.9133 , 0.9961},
{0.3112 , 0.2630 , 0.4505 , 0.1524 , 0.0782},
{0.5285 , 0.6541 , 0.0838 , 0.8258 , 0.4427},
{0.1656 , 0.6892 , 0.2290 , 0.5383 , 0.1067}
};
// Output array - host side
float c[NX][NY] = { 0 };
cufftHandle plan;
cufftComplex *data; // Holds both the input and the output - device side
int n[NRANK] = {NX, NY};
// Allocated memory and copy from host to device
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*(NY/2+1));
for(int i=0; i<NX; ++i){
// Uses this because my actual array is a dynamically allocated.
// but here I've replaced it with a static 2D array to make it simple.
cudaMemcpy(reinterpret_cast<float*>(data) + i*NY, b[i], sizeof(float)*NY, cudaMemcpyHostToDevice);
}
// Performe the fft
cufftPlanMany(&plan, NRANK, n,NULL, 1, 0,NULL, 1, 0,CUFFT_R2C,BATCH);
cufftSetCompatibilityMode(plan, CUFFT_COMPATIBILITY_NATIVE);
cufftExecR2C(plan, (cufftReal*)data, data);
cudaThreadSynchronize();
cudaMemcpy(c, data, sizeof(float)*NX*NY, cudaMemcpyDeviceToHost);
// Here c is a NxM matrix. I want to split it to 2 seperate NxM matrices with each
// having the complex and real component of the output
// Here c is in
cufftDestroy(plan);
cudaFree(data);
return 0;
}
根据JackOLanter的建议,我修改了如下代码。但问题仍未解决。
float real_vec[NX][NY] = {0}; // host vector, real part
float imag_vec[NX][NY] = {0}; // host vector, imaginary part
cudaError cudaStat1 = cudaMemcpy2D (real_vec, sizeof(real_vec[0]), data, sizeof(data[0]),NY*sizeof(float2), NX, cudaMemcpyDeviceToHost);
cudaError cudaStat2 = cudaMemcpy2D (imag_vec, sizeof(imag_vec[0]),data + 1, sizeof(data[0]),NY*sizeof(float2), NX, cudaMemcpyDeviceToHost);
我得到的错误是'无效音调参数错误'。但我无法理解为什么。对于目的地,我使用间距大小为'float',而对于源我使用'float2'的大小
答案 0 :(得分:2)
你的问题和你的代码对我来说没有多大意义。
cufftExecR2C
的输出是NX*(NY/2+1)
float2
矩阵,可以将其解释为NX*(NY+2)
float
矩阵。因此,您没有为c
(仅NX*NY
float
)为最后cudaMemcpy
分配足够的空间。对于输出的连续组件,您仍然需要一个复杂的内存位置; cufftExecR2C
命令无关,但更为一般:如何将复杂的NX*NY
矩阵拆分为2
NX*NY
个分别包含实部和虚部的矩阵。如果我正确地解释了您的问题,那么@njuffa在
提出的解决方案Copying data to “cufftComplex” data struct?
可能是你的好线索。
修改强>
下面是一个小例子,说明当从主机到主机/从设备复制它们时,如何“组装”和“分解”复杂矢量的实部和虚部。 请添加您自己的CUDA错误检查。
#include <stdio.h>
#define N 16
int main() {
// Declaring, allocating and initializing a complex host vector
float2* b = (float2*)malloc(N*sizeof(float2));
printf("ORIGINAL DATA\n");
for (int i=0; i<N; i++) {
b[i].x = (float)i;
b[i].y = 2.f*(float)i;
printf("%f %f\n",b[i].x,b[i].y);
}
printf("\n\n");
// Declaring and allocating a complex device vector
float2 *data; cudaMalloc((void**)&data, sizeof(float2)*N);
// Copying the complex host vector to device
cudaMemcpy(data, b, N*sizeof(float2), cudaMemcpyHostToDevice);
// Declaring and allocating space on the host for the real and imaginary parts of the complex vector
float* cr = (float*)malloc(N*sizeof(float));
float* ci = (float*)malloc(N*sizeof(float));
/*******************************************************************/
/* DISASSEMBLING THE COMPLEX DATA WHEN COPYING FROM DEVICE TO HOST */
/*******************************************************************/
float* tmp_d = (float*)data;
cudaMemcpy2D(cr, sizeof(float), tmp_d, 2*sizeof(float), sizeof(float), N, cudaMemcpyDeviceToHost);
cudaMemcpy2D(ci, sizeof(float), tmp_d+1, 2*sizeof(float), sizeof(float), N, cudaMemcpyDeviceToHost);
printf("DISASSEMBLED REAL AND IMAGINARY PARTS\n");
for (int i=0; i<N; i++)
printf("cr[%i] = %f; ci[%i] = %f\n",i,cr[i],i,ci[i]);
printf("\n\n");
/******************************************************************************/
/* REASSEMBLING THE REAL AND IMAGINARY PARTS WHEN COPYING FROM HOST TO DEVICE */
/******************************************************************************/
cudaMemcpy2D(tmp_d, 2*sizeof(float), cr, sizeof(float), sizeof(float), N, cudaMemcpyHostToDevice);
cudaMemcpy2D(tmp_d + 1, 2*sizeof(float), ci, sizeof(float), sizeof(float), N, cudaMemcpyHostToDevice);
// Copying the complex device vector to host
cudaMemcpy(b, data, N*sizeof(float2), cudaMemcpyHostToDevice);
printf("REASSEMBLED DATA\n");
for (int i=0; i<N; i++)
printf("%f %f\n",b[i].x,b[i].y);
printf("\n\n");
getchar();
return 0;
}