我有一个包含多列的数据集,我只对分析六列中的数据感兴趣。它在一个txt文件中,我想加载文件,然后用标题(时间,模式,事件,xcoord,ycoord,phi)拉出以下列(0,1,2,4,6,7)。总共有十列,以下是数据的示例:
1385940076332 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076336 2 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076339 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076342 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076346 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076350 2 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076353 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076356 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
当我使用以下代码将数据解析为列时,它似乎只计算数据 - 但我希望能够列出数据以供进一步分析。这是我在@alko中使用的代码:
import pandas as pd
df = pd.read_csv('filtered.txt', header=None, false_values=None, sep='\s+')[[0, 1, 2, 4, 6, 7]]
df.columns = ['time', 'mode', 'event', 'xcoord', 'ycoord', 'phi']
print df
以下是该代码返回的内容:
class 'pandas.core.frame.DataFrame'
Int64Index: 115534 entries, 0 to 115533
Data columns (total 6 columns):
time 115534 non-null values
mode 115534 non-null values
event 115534 non-null values
xcoord 115534 non-null values
ycoord 115534 non-null values
phi 115534 non-null values
dtypes: float64(3), int64(2), object(1)
因此,我们的目标是从10张原文中提取这6列,标记它们并列出它们。
答案 0 :(得分:2)
import pandas as pd
from StringIO import StringIO
s = """1385940076332 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076336 2 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076339 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076342 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076346 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076350 2 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076353 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.000000 0.000000
1385940076356 3 M subject_avatar -30.000000 1.000000 -59.028107 180.000000 0.# 000000 0.000000"""
df = pd.read_csv(StringIO(s),header=None, sep='\s+')[[0, 2, 3, 4, 6, 7]]
df.columns = ['time', 'mode', 'event', 'xcoord', 'ycoord', 'phi']
print df
# time mode event xcoord ycoord phi
# 0 1385940076332 M subject_avatar -30 -59.028107 180
# 1 1385940076336 M subject_avatar -30 -59.028107 180
# 2 1385940076339 M subject_avatar -30 -59.028107 180
# 3 1385940076342 M subject_avatar -30 -59.028107 180
# 4 1385940076346 M subject_avatar -30 -59.028107 180
# 5 1385940076350 M subject_avatar -30 -59.028107 180
# 6 1385940076353 M subject_avatar -30 -59.028107 180
# 7 1385940076356 M subject_avatar -30 -59.028107 180
请注意,我更正了列索引,因为您在问题中提供的索引似乎不正确。