这是我编写node.js服务器端的第一次冒险。它已经 到目前为止很有趣,但我在理解正确方法时遇到了一些困难 实现与node.js流相关的东西。
出于测试和学习的目的,我正在使用大文件 内容是zlib压缩的。压缩内容是二进制数据 数据包的长度为38个字节。我正在尝试创建一个结果文件 看起来几乎与原始文件相同,只是有一个 每1024个38字节数据包的未压缩31字节标头。
+----------+----------+----------+----------+
| packet 1 | packet 2 | ...... | packet N |
| 38 bytes | 38 bytes | ...... | 38 bytes |
+----------+----------+----------+----------+
+----------+--------------------------------+----------+--------------------------------+
| header 1 | 1024 38 byte packets | header 2 | 1024 38 byte packets |
| 31 bytes | zlib compressed | 31 bytes | zlib compressed |
+----------+--------------------------------+----------+--------------------------------+
正如您所看到的,这有点像翻译问题。意思是,我 将一些源流作为输入然后稍微改变它 进入一些输出流。因此,实施一个很自然 Transform stream
该课程只是试图完成以下任务:
this.push(chunk)
。用例类似于:
var fs = require('fs');
var me = require('./me'); // Where my Transform stream code sits
var inp = fs.createReadStream('depth_1000000');
var out = fs.createWriteStream('depth_1000000.out');
inp.pipe(me.createMyTranslate()).pipe(out);
假设转换是这个用例的不错选择,我似乎是
遇到可能的背压问题。我打电话给this.push(chunk)
在_transform
内不断返回false
。为什么会这样,怎么样
处理这样的事情?
答案 0 :(得分:6)
我认为Transform
适用于此,但我会将膨胀作为管道中的单独步骤执行。
这是一个快速且基本未经测试的例子:
var zlib = require('zlib');
var stream = require('stream');
var transformer = new stream.Transform();
// Properties used to keep internal state of transformer.
transformer._buffers = [];
transformer._inputSize = 0;
transformer._targetSize = 1024 * 38;
// Dump one 'output packet'
transformer._dump = function(done) {
// concatenate buffers and convert to binary string
var buffer = Buffer.concat(this._buffers).toString('binary');
// Take first 1024 packets.
var packetBuffer = buffer.substring(0, this._targetSize);
// Keep the rest and reset counter.
this._buffers = [ new Buffer(buffer.substring(this._targetSize)) ];
this._inputSize = this._buffers[0].length;
// output header
this.push('HELLO WORLD');
// output compressed packet buffer
zlib.deflate(packetBuffer, function(err, compressed) {
// TODO: handle `err`
this.push(compressed);
if (done) {
done();
}
}.bind(this));
};
// Main transformer logic: buffer chunks and dump them once the
// target size has been met.
transformer._transform = function(chunk, encoding, done) {
this._buffers.push(chunk);
this._inputSize += chunk.length;
if (this._inputSize >= this._targetSize) {
this._dump(done);
} else {
done();
}
};
// Flush any remaining buffers.
transformer._flush = function() {
this._dump();
};
// Example:
var fs = require('fs');
fs.createReadStream('depth_1000000')
.pipe(zlib.createInflate())
.pipe(transformer)
.pipe(fs.createWriteStream('depth_1000000.out'));
答案 1 :(得分:5)
push
将返回false。由于您正在写入磁盘,因此这是有道理的:您处理数据的速度比写出来的速度快。
当out
的缓冲区已满时,您的转换流将无法推送,并开始自行缓冲数据。如果该缓冲区应该填充,那么inp
将开始填充。这就是事情应该如何运作。管道流只会像链中最慢的链接一样快地处理数据(一旦缓冲区已满)。
答案 2 :(得分:3)
2013年的这个问题是我能够找到的关于如何处理"背压" 在创建节点转换流时。
从节点7.10.0 Transform stream和Readable stream文档中我收集了什么
曾经push
返回false,在_read
之前不应推送任何其他内容
调用。
转换文档没有提到_read
,除了提到基本转换
class实现它(和_write)。我发现有关push
返回false的信息
并在Readable stream文档中调用_read
。
我在变形背压上发现的唯一其他权威评论仅提及 它是一个问题,而且位于节点文件_stream_transform.js顶部的注释中。
以下是关于该评论背压的部分:
// This way, back-pressure is actually determined by the reading side,
// since _read has to be called to start processing a new chunk. However,
// a pathological inflate type of transform can cause excessive buffering
// here. For example, imagine a stream where every byte of input is
// interpreted as an integer from 0-255, and then results in that many
// bytes of output. Writing the 4 bytes {ff,ff,ff,ff} would result in
// 1kb of data being output. In this case, you could write a very small
// amount of input, and end up with a very large amount of output. In
// such a pathological inflating mechanism, there'd be no way to tell
// the system to stop doing the transform. A single 4MB write could
// cause the system to run out of memory.
//
// However, even in such a pathological case, only a single written chunk
// would be consumed, and then the rest would wait (un-transformed) until
// the results of the previous transformed chunk were consumed.
这是我拼凑在一起处理变换流中背压的解决方案 我非常确定有效。 (我还没有写过任何真正的测试,这需要 写一个可写的流来控制背压。)
这是一个基本的线变换,需要作为线变换工作,但确实如此 证明处理"背压"。
const stream = require('stream');
class LineTransform extends stream.Transform
{
constructor(options)
{
super(options);
this._lastLine = "";
this._continueTransform = null;
this._transforming = false;
this._debugTransformCallCount = 0;
}
_transform(chunk, encoding, callback)
{
if (encoding === "buffer")
return callback(new Error("Buffer chunks not supported"));
if (this._continueTransform !== null)
return callback(new Error("_transform called before previous transform has completed."));
// DEBUG: Uncomment for debugging help to see what's going on
//console.error(`${++this._debugTransformCallCount} _transform called:`);
// Guard (so we don't call _continueTransform from _read while it is being
// invoked from _transform)
this._transforming = true;
// Do our transforming (in this case splitting the big chunk into lines)
let lines = (this._lastLine + chunk).split(/\r\n|\n/);
this._lastLine = lines.pop();
// In order to respond to "back pressure" create a function
// that will push all of the lines stopping when push returns false,
// and then resume where it left off when called again, only calling
// the "callback" once all lines from this transform have been pushed.
// Resuming (until done) will be done by _read().
let nextLine = 0;
this._continueTransform = () =>
{
let backpressure = false;
while (nextLine < lines.length)
{
if (!this.push(lines[nextLine++] + "\n"))
{
// we've got more to push, but we got backpressure so it has to wait.
if (backpressure)
return;
backpressure = !this.push(lines[nextLine++] + "\n");
}
}
// DEBUG: Uncomment for debugging help to see what's going on
//console.error(`_continueTransform ${this._debugTransformCallCount} finished\n`);
// All lines are pushed, remove this function from the LineTransform instance
this._continueTransform = null;
return callback();
};
// Start pushing the lines
this._continueTransform();
// Turn off guard allowing _read to continue the transform pushes if needed.
this._transforming = false;
}
_flush(callback)
{
if (this._lastLine.length > 0)
{
this.push(this._lastLine);
this._lastLine = "";
}
return callback();
}
_read(size)
{
// DEBUG: Uncomment for debugging help to see what's going on
//if (this._transforming)
// console.error(`_read called during _transform ${this._debugTransformCallCount}`);
// If a transform has not pushed every line yet, continue that transform
// otherwise just let the base class implementation do its thing.
if (!this._transforming && this._continueTransform !== null)
this._continueTransform();
else
super._read(size);
}
}
我通过在~10000行上取消注释的DEBUG行运行它来测试上述内容
~200KB文件。将stdout或stderr重定向到文件(或两者)以分离调试
来自预期产出的陈述。 (node test.js > out.log 2> err.log
)
const fs = require('fs');
let inStrm = fs.createReadStream("testdata/largefile.txt", { encoding: "utf8" });
let lineStrm = new LineTransform({ encoding: "utf8", decodeStrings: false });
inStrm.pipe(lineStrm).pipe(process.stdout);
在写这篇文章的时候,我并没有意识到_read
可以在之前被称为
_transform
已退回,所以我没有实施this._transforming
后卫,我就是
收到以下错误:
Error: no writecb in Transform class
at afterTransform (_stream_transform.js:71:33)
at TransformState.afterTransform (_stream_transform.js:54:12)
at LineTransform._continueTransform (/userdata/mjl/Projects/personal/srt-shift/dist/textfilelines.js:44:13)
at LineTransform._transform (/userdata/mjl/Projects/personal/srt-shift/dist/textfilelines.js:46:21)
at LineTransform.Transform._read (_stream_transform.js:167:10)
at LineTransform._read (/userdata/mjl/Projects/personal/srt-shift/dist/textfilelines.js:56:15)
at LineTransform.Transform._write (_stream_transform.js:155:12)
at doWrite (_stream_writable.js:331:12)
at writeOrBuffer (_stream_writable.js:317:5)
at LineTransform.Writable.write (_stream_writable.js:243:11)
查看节点实现我意识到这个错误意味着回调
给予_transform
不止一次。没有太多的信息
要么发现这个错误,我想我已经包含了我在这里想到的东西。
答案 3 :(得分:2)
最近遇到了类似的问题,需要处理膨胀转换流中的背压-处理push()
返回false的秘诀是在流上注册并处理'drain'
事件
_transform(data, enc, callback) {
const continueTransforming = () => {
... do some work / parse the data, keep state of where we're at etc
if(!this.push(event))
this._readableState.pipes.once('drain', continueTransforming); // will get called again when the reader can consume more data
if(allDone)
callback();
}
continueTransforming()
}
注意,这有点棘手,因为我们正在深入研究内部,pipes
甚至可以是Readable
的数组,但是在....pipe(transform).pipe(...
的常见情况下确实有效< / p>
如果Node社区的某人可以提出一种“正确”的方法来处理.push()
返回假的情况,那将是很好的
答案 4 :(得分:0)
我最终遵循了Ledion的示例,并创建了一个实用的Transform类,该类有助于反压。该实用程序添加了一个名为addData的异步方法,实现Transform可以等待它。
'use strict';
const { Transform } = require('stream');
/**
* The BackPressureTransform class adds a utility method addData which
* allows for pushing data to the Readable, while honoring back-pressure.
*/
class BackPressureTransform extends Transform {
constructor(...args) {
super(...args);
}
/**
* Asynchronously add a chunk of data to the output, honoring back-pressure.
*
* @param {String} data
* The chunk of data to add to the output.
*
* @returns {Promise<void>}
* A Promise resolving after the data has been added.
*/
async addData(data) {
// if .push() returns false, it means that the readable buffer is full
// when this occurs, we must wait for the internal readable to emit
// the 'drain' event, signalling the readable is ready for more data
if (!this.push(data)) {
await new Promise((resolve, reject) => {
const errorHandler = error => {
this.emit('error', error);
reject();
};
const boundErrorHandler = errorHandler.bind(this);
this._readableState.pipes.on('error', boundErrorHandler);
this._readableState.pipes.once('drain', () => {
this._readableState.pipes.removeListener('error', boundErrorHandler);
resolve();
});
});
}
}
}
module.exports = {
BackPressureTransform
};
使用该实用工具类,我的Transforms现在看起来像这样:
'use strict';
const { BackPressureTransform } = require('./back-pressure-transform');
/**
* The Formatter class accepts the transformed row to be added to the output file.
* The class provides generic support for formatting the result file.
*/
class Formatter extends BackPressureTransform {
constructor() {
super({
encoding: 'utf8',
readableObjectMode: false,
writableObjectMode: true
});
this.anyObjectsWritten = false;
}
/**
* Called when the data pipeline is complete.
*
* @param {Function} callback
* The function which is called when final processing is complete.
*
* @returns {Promise<void>}
* A Promise resolving after the flush completes.
*/
async _flush(callback) {
// if any object is added, close the surrounding array
if (this.anyObjectsWritten) {
await this.addData('\n]');
}
callback(null);
}
/**
* Given the transformed row from the ETL, format it to the desired layout.
*
* @param {Object} sourceRow
* The transformed row from the ETL.
*
* @param {String} encoding
* Ignored in object mode.
*
* @param {Function} callback
* The callback function which is called when the formatting is complete.
*
* @returns {Promise<void>}
* A Promise resolving after the row is transformed.
*/
async _transform(sourceRow, encoding, callback) {
// before the first object is added, surround the data as an array
// between each object, add a comma separator
await this.addData(this.anyObjectsWritten ? ',\n' : '[\n');
// update state
this.anyObjectsWritten = true;
// add the object to the output
const parsed = JSON.stringify(sourceRow, null, 2).split('\n');
for (const [index, row] of parsed.entries()) {
// prepend the row with 2 additional spaces since we're inside a larger array
await this.addData(` ${row}`);
// add line breaks except for the last row
if (index < parsed.length - 1) {
await this.addData('\n');
}
}
callback(null);
}
}
module.exports = {
Formatter
};
答案 5 :(得分:0)
我认为迈克·利珀特(Mike Lippert)的answer最接近真相。看来,等待新的_read()
调用从阅读流中再次开始是向Transform
主动通知阅读器已准备就绪的唯一方法。我想分享一个简单的示例,说明我如何临时覆盖_read()
。
_transform(buf, enc, callback) {
// prepend any unused data from the prior chunk.
if (this.prev) {
buf = Buffer.concat([ this.prev, buf ]);
this.prev = null;
}
// will keep transforming until buf runs low on data.
if (buf.length < this.requiredData) {
this.prev = buf;
return callback();
}
var result = // do something with data...
var nextbuf = buf.slice(this.requiredData);
if (this.push(result)) {
// Continue transforming this chunk
this._transform(nextbuf, enc, callback);
}
else {
// Node is warning us to slow down (applying "backpressure")
// Temporarily override _read request to continue the transform
this._read = function() {
delete this._read;
this._transform(nextbuf, enc, callback);
};
}
}
答案 6 :(得分:0)
我试图找到转换源代码中提到的注释,并且参考链接一直在更改,因此我将其留在这里以供参考:
// a transform stream is a readable/writable stream where you do
// something with the data. Sometimes it's called a "filter",
// but that's not a great name for it, since that implies a thing where
// some bits pass through, and others are simply ignored. (That would
// be a valid example of a transform, of course.)
//
// While the output is causally related to the input, it's not a
// necessarily symmetric or synchronous transformation. For example,
// a zlib stream might take multiple plain-text writes(), and then
// emit a single compressed chunk some time in the future.
//
// Here's how this works:
//
// The Transform stream has all the aspects of the readable and writable
// stream classes. When you write(chunk), that calls _write(chunk,cb)
// internally, and returns false if there's a lot of pending writes
// buffered up. When you call read(), that calls _read(n) until
// there's enough pending readable data buffered up.
//
// In a transform stream, the written data is placed in a buffer. When
// _read(n) is called, it transforms the queued up data, calling the
// buffered _write cb's as it consumes chunks. If consuming a single
// written chunk would result in multiple output chunks, then the first
// outputted bit calls the readcb, and subsequent chunks just go into
// the read buffer, and will cause it to emit 'readable' if necessary.
//
// This way, back-pressure is actually determined by the reading side,
// since _read has to be called to start processing a new chunk. However,
// a pathological inflate type of transform can cause excessive buffering
// here. For example, imagine a stream where every byte of input is
// interpreted as an integer from 0-255, and then results in that many
// bytes of output. Writing the 4 bytes {ff,ff,ff,ff} would result in
// 1kb of data being output. In this case, you could write a very small
// amount of input, and end up with a very large amount of output. In
// such a pathological inflating mechanism, there'd be no way to tell
// the system to stop doing the transform. A single 4MB write could
// cause the system to run out of memory.
//
// However, even in such a pathological case, only a single written chunk
// would be consumed, and then the rest would wait (un-transformed) until
// the results of the previous transformed chunk were consumed.