因为MLlib不支持稀疏输入。所以我在spark集群上运行支持稀疏输入格式的流动代码。 设置是:
代码是:
import java.util.Random
import scala.collection.mutable.HashMap
import scala.io.Source
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.util.Vector
import java.lang.Math
import org.apache.spark.broadcast.Broadcast
object SparseLR {
val lableNum = 1
val dimNum = 632918
val iteration = 10
val alpha = 0.1
val lambda = 0.1
val rand = new Random(42)
var w = Vector(dimNum, _=> rand.nextDouble)
class SparserVector {
var elements = new HashMap[Int, Double]
def insert(index: Int, value: Double){
elements += index -> value;
}
def *(scale: Double): Vector = {
var x = new Array[Double](dimNum)
elements.keySet.foreach(k => x(k) = scale * elements.get(k).get)
Vector(x)
}
}
case class DataPoint(x: SparserVector, y: Int)
def parsePoint(line: String): DataPoint = {
var features = new SparserVector
val fields = line.split("\t")
//println("fields:" + fields(0))
val y = fields(0).toInt
fields.filter(_.contains(":")).foreach( f => {
val feature = f.split(":")
features.insert(feature(0).toInt, feature(1).toDouble)
})
return DataPoint(features, y)
}
def gradient(p: DataPoint, w: Broadcast[Vector]) : Vector = {
def h(w: Broadcast[Vector], x: SparserVector): Double = {
val wb = w.value
val features = x.elements
val s = features.keySet.map(k => features.get(k).get * wb(k)).reduce(_ + _)
1 / (1 + Math.exp(-p.y * s))
}
p.x * (-(1 - p.y *h(w, p.x)))
}
def train(sc: SparkContext, dataPoints: RDD[DataPoint]) {
//val sampleNum = dataPoints.count
val sampleNum = 11680250
for(i <- 0 until iteration) {
val wb = sc.broadcast(w)
val g = (dataPoints.map(p => gradient(p, wb)).reduce(_ + _) + lambda * wb.value) /sampleNum
w -= alpha * g
println("iteration " + i + ": g = " + g)
}
}
def main(args : Array[String]): Unit = {
System.setProperty("spark.executor.memory", "15g")
System.setProperty("spark.default.parallelism", "32");
val sc = new SparkContext("spark://xxx:12036", "LR", "/xxx/spark", List("xxx_2.9.3-1.0.jar"))
val lines = sc.textFile("hdfs:xxx/xxx.txt", 32)
val trainset = lines.map(parsePoint _).cache()
train(sc, trainset)
}
}
任何人都可以帮助我吗?谢谢!
答案 0 :(得分:4)
很难给你一个答案。也许这会更好地匹配code review stackoverflow子网站?
有些事情显而易见:
您的渐变功能似乎效率低下。当你想为地图的每个键/值对做一些事情时,做
效率要高得多for((k,v)<-map) {
...
}
而非
for(k<-map.keySet) { val value = map.get(k).get;
...
}
此外,对于像这样的性能关键代码,最好将reduce更改为累积可变值。所以重写的渐变函数将是
def gradient(p: DataPoint, w: Broadcast[Vector]) : Vector = {
def h(w: Broadcast[Vector], x: SparserVector): Double = {
val wb = w.value
val features = x.elements
var s = 0.0
for((k,v)<-features)
s += v * wb(k)
1 / (1 + Math.exp(-p.y * s))
}
p.x * (-(1 - p.y *h(w, p.x)))
}
现在,如果您想进一步提高性能,则必须更改SparseVector以使用索引数组和值数组而不是Map [Int,Double]。原因是在Map中,键和值将被装箱作为具有相当大开销的对象,而Array [Int]或Array [Double]只是一个紧凑的内存块
(为方便起见,最好定义一个使用SortedMap [Int,Double]的构建器,并在完成构建时转换为两个数组)
class SparseVector(val indices: Array[Int], val values: Array[Double]) {
require(indices.length == values.length)
def *(scale: Double): Vector = {
var x = new Array[Double](dimNum)
var i = 0
while(i < indices.length) {
x(indices(i)) = scale * values(i)
i += 1
}
Vector(x)
}
}
请注意,上面的代码示例未经过测试,但我想您会明白这一点。