有效地找到二叉树中最重的路径 - python

时间:2013-12-21 15:27:50

标签: python binary-tree binary-search-tree tree-nodes

我试图解决以下问题:找到树中最重节点的权重,并将该节点表示为列表。这就是我想出来的,但我很确定这是一个非常混乱的解决方案。关于在课程框架内更有效地做这件事的建议吗?

鉴于课程:

    class Tree_node():
        def __init__(self,key,val):
            self.key=key
            self.val=val
            self.left=None
            self.right=None  

    def __repr__(self):
    return "[" + str(self.left) + " " + str(self.key) + " " + \
                str(self.val) + " " + str(self.right) + "]"     

我计算最重路径的重量:

def weight(node):
    if node == None:
        return 0
    if weight(node.left)>weight(node.right):
        return node.val+weight(node.left)
    else:
        return node.val+weight(node.right)

然后我尝试将最重的路径作为列表返回:

def heavy_path(node):
    if node==None:
        return []
    elif node.val+weight(node.left)> node.val+weight(node.right):
        return [node.val] + filter_values(path_values(node.left))
    else:return [node.val] + filter_values(path_values(node.right))

def path_values(node):
    if node == None:
        return 0
    return [node.val,path_values(node.left),path_values(node.right)]

def filter_values (node):
    values = []
    sub_lists = []
    if node != 0:
        for value in node:
            if isinstance(value, list):
                sub_lists = filter_values(value)
            else:
                if value != 0:
                    values.append(value)
    return values+sub_lists

所以给定像[[无7无]的树b 5 [[无c 8无] d 3无]]:

>>> weight(t)
16
>>> heavy_path(t)
[5, 3, 8]

这样做的更好方法是什么?

1 个答案:

答案 0 :(得分:2)

假设您将最重的路径解释为始终以树的根开始并下降到单个叶的路径。您可以尝试合并权重查找和路径构建操作:

def heavy_path(node):
  if not node
    return (0,[])
  [lweight,llist] = heavy_path(node.left)
  [rweight,rlist] = heavy_path(node.right)
  if lweight>rweight:
    return (node.val+lweight,[node.val]+llist)
  else:
    return (node.val+rweight,[node.val]+rlist)

或者使用历史悠久的技术通过Memoization来加速这种计算。一旦使用了memoization,您就可以在更改树时保持路径权值最新。

def weight(node):
  if node == None:
      return 0
  node.pathweight=node.val+max(weight(node.left),weight(node.right))
  return node.pathweight

def heavy_edge(node):
  if not node.left:
    lweight=0
  else:
    lweight=node.left.pathweight
  if not node.right:
    rweight=0
  else:
    rweight=node.right.pathweight
  if lweight>rweight:
    return [node.val,heavy_edge(node.left)]
  else:
    return [node.val,heavy_edge(node.right)]

weight(t) #Precalculate the pathweight of all the nodes in O(n) time
heavy_edge(T) #Use the precalculated pathweights to efficient find list the heaviest path in O(lg n) time